首页 黑客接单正文

光伏逆变器与发电机并网(太阳能发电并网逆变器)

光伏发电并网原理

光伏并网发电系统原理如下

太阳能光伏发电是依靠太阳能电池组件,利用半导体材料的电子学特性,当太阳光照射在半导体PN结上,由于P-N结势垒区产生了较强的内建静电场,因而产生在势垒区中的非平衡电子和空穴或产生在势垒区外但扩散进势垒区的非平衡电子和空穴。

在内建静电场的作用下,各自向相反方向运动,离开势垒区,结果使P区电势升高,N区电势降低,从而在外电路中产生电压和电流,将光能转化成电能。

太阳能光伏发电系统大体上可以分为两类

一类是并网发电系统

即和公用电网通过标准接口相连接,像一个小型的发电厂

另一类是独立式发电系统

即在自己的闭路系统内部形成电路。

并网发电系统通过光伏数组将接收来的太阳辐射能量经过高频直流转换后变成高压直流电,经过逆变器逆变后向电网输出与电网电压同频、同相的正弦交流电流。

而独立式发电系统光伏数组首先会将接收来的太阳辐射能量直接转换成电能供给负载,并将多余能量经过充电控制器后以化学能的形式储存在蓄电池。

燃料电池并网发电和光伏并网发电所用的逆变器一个原理吗?

1.1光伏并网发电系统的基本原理

光伏并网逆变器系统是将太阳能光伏阵列发出的直流电转化为与公共电网电压同频同相的交流电,因此该系统是既能满足本地负载用电又能向公共电网送电。一般情况下,公共电网系统可看作是容量为无穷大的交流电压源。当太阳能光伏发电并网系统中太阳能光伏阵列的发电量小于本地负载用电量时,本地负载电力不足部分由公共电网输送供给;当光伏电池阵列的发电量大于本地负载用电量时,太阳能光伏系统将多余的电能输送给公共电网,实现并网发电

1.2光伏并网发电系统的组成

太阳能光伏发电并网系统组成如图所示,该系统一般由太阳能电池光伏阵列、MPPT控制、DC/DC变换器、驱动电路以及控制器组成,其中变换器可将太阳能光伏阵列发出的直流电逆变成正弦交流电并入公共电网。控制器主要控制逆变器并网电流的波形、功率以及光伏电池更大功率点的跟踪,以便向电网传送的功率与太阳能光伏电池阵列所发的更大功率电能相匹配。

1.3光伏并网发电系统的控制方式

如果光伏并网逆变器的输出采用电压控制,则相当于是电压源与电压源并联运行;如果光伏并网逆变器的输出采用电流控制,就相当于电流源与电压源并联运行。逆变器采用电流控制时,只需控制逆变器的输出电流跟踪电网电压,控制输出电流与电网电压同频同相,这样系统的功率因数为1。目前,光伏并网逆变器一般都采用电压源输入、电流源输出的控制方式。

太阳能光伏发电并网系统的逆变器通常采用电流控制模式,这样整个系统系统实际上就是一个电压源和电流源并联的系统。逆变器并网运行的主要控制目标是要保证逆变器输出电流与公共电网电压同频同相,并且还能实时跟踪电网电压实现更大功率跟踪控制。通过采用锁相控制技术实现太阳能光伏发电并网系统输出的并网电流与公共电网电压相位同步,保证系统输出的功率因数为1。光伏并网逆变器运行时还要控制并网电流的总畸变失真要低,以减小对电网的谐波影响,使并网系统的有功功率输出达到更大。

1.4光伏并网发电系统的分类

光伏并网发电系统可以按照系统功能分为两类:一种为不含蓄电池环节的不可调度式光伏并网发电系统;另一种为含有蓄电池组的可调度式光伏并网发电系统。系统结构图如1.1所示

可调度式光伏并网发电系统增加了储能环节,系统首先对蓄电池进行充电,然后根据需要将系统用作并网或者经逆变后独立使用,系统工作时间和并网功率大小可以人为设定。可调度式并网系统虽然在表面上看来比不可调度式系统功能齐全,但由于增加了储能环节,带来了很多严重的问题,这是因为:

(1)由于采用蓄电池作为储能设备,系统必须增加蓄电池的充电装置,这就增加了成本并且降低了系统的可靠性。

(2)蓄电池组的寿命较短。目前免维修蓄电池在良好环境下的工作寿命通常为5年,而光伏阵列稳定工作的寿命则在25~30年之问,这样就需要定期更换蓄电池组,又增加了许多系统的投入。

(3)蓄电池组较为笨重,需要占用较大空间,同时要防止泄露出腐蚀性液体,另外报废的蓄电池组要专门处理,否则会造成污染。

基于上述原因,目前的光伏并网系统主要以不可调度式系统为主。不可调度式光伏并网发电系统的集成度高,其安装和调试相对方便,可靠性也高。

光伏发电,满足什么条件才能并网发电

光伏发电系统并网的基本必要条件是,逆变器输出之正弦波电流的频率和相位与电网电压的频率和相位相同。

分布式光伏系统并网需考虑安全、光伏配置、计量和结算方面的问题,在安全方面并网点开关是否符合安全要求、设备在电网异常或故障时的安全性能否在电网停电时可靠断开以保证人身安全。

扩展资料

光伏电站接入电网时对系统电网有一定影响,主要表现在太阳能光伏电站的实际输出功率随光照强度的变化而变化,白天光照强度最强时,发电装置输出功率更大,夜晚几乎无光照以后,输出功率基本为零。因此除设备故障因素以外,发电装置输出功率随日照、天气、季节、温度等自然因素而变化,输出功率不稳定。

光伏发电并网有集中式大型并网光伏电站一般都是国家级电站,主要特点是将所发电能直接输送到电网,由电网统一调配向用户供电。但这种电站投资大,建设周期长,占地面积大,还没有太大发展。而分散式小型并网光伏,特别是光伏建筑一体化光伏发电,由于投资小、建设快、占地面积小、政策支持力度大等优点,是光伏发电并网的主流。

光伏发电如何并网?

光伏发电并网:太阳产生的直流电转换成交流电之后接入公共电网。

原理:

光伏发电的主要原理是半导体的光电效应。光子照射到金属上时,它的能量可以被金属中某个电子全部吸收,电子吸收的能量足够大,能克服金属原子内部的库仑力做功,离开金属表面逃逸出来,成为光电子。

硅原子有4个外层电子,如果在纯硅中掺入有5个外层电子的原子如磷原子,就成为N型半导体;若在纯硅中掺入有3个外层电子的原子如硼原子,形成P型半导体。当P型和N型结合在一起时,接触面就会形成电势差,成为太阳能电池。当太阳光照射到P-N结后,电流便从P型一边流向N型一边,形成电流。

光电效应就是光照使不均匀半导体或半导体与金属结合的不同部位之间产生电位差的现象。它首先是由光子(光波)转化为电子、光能量转化为电能量的过程;其次,是形成电压过程。

光伏并网逆变器与风力发电并网逆变器有什么区别

一、指代不同

1、光伏并网逆变器:主要是直流系统,即将太阳电池发出的电能给蓄电池充电,而蓄电池直接给负载供电。

2、风力发电并网逆变器:可以将直流电转换成交流电外,其输出的交流电可以与市电的频率及相位同步,因此输出的交流电可以回到市电。

二、特点不同

1、光伏并网逆变器:要求具有较高的效率。由于太阳电池的价格偏高,为了更大限度地利用太阳电池,提高系统效率,必须设法提高逆变器的效率。

2、风力发电并网逆变器:将直流电源转换为交流电源,以便送回电网。并网逆变器的输出电压的频率需和电网频率(50或60Hz)相同,一般会用机器中的振荡器达成,并且也会限制输出电压不超过电网电压。

三、原理不同

1、光伏并网逆变器:逆变器将直流电转化为交流电,若直流电压较低,则通过交流变压器升压,即得到标准交流电压和频率。对大容量的逆变器,由于直流母线电压较高,交流输出一般不需要变压器升压即能达到220V。

2、风力发电并网逆变器:有使用较新的高频变压器、传统的工频变压器,或是无变压器的逆变器架构。高频变压器不是直接提供120 V或240 V的AC电源,而是有电脑控制的多步程式,让电源转换为高频的交流电,再转换为直流电,最后再转换为电源需要的电压及频率。

参考资料来源:百度百科-并网逆变器

参考资料来源:百度百科-光伏并网逆变器

版权声明

本文仅代表作者观点,不代表本站立场。
本文系作者授权发表,未经许可,不得转载。