光伏电站工程管理论文(光伏电站工程管理论文摘要)
对光伏电站运维的建议
直流控制器、逆变器通常十分可靠,可以使用多年。但是有时因设计不好,电子元器件经过长期运行可能会被损坏,雷击也可能导致元器件损坏。
要定期检查控制器、逆变器与其它设备的连线是否牢固,检查控制器、逆变器的接地连线是否牢固,按需要固紧;检查控制器、逆变器内电路板上的元器件有无虚焊现象、有无损坏元器件,按照需要进行焊接修复或更换。
防雷装置

夏季多雨水雷电,定期测量接地装置的接地电阻值是否满足设计要求;定期检查各设备部件与接地系统是否连接可靠,若出现连接不牢靠,必须要焊接牢固;在雷雨过后或雷雨季到来之前,检查方阵汇流盒以及各设备内安装的防雷保护器是否失效,并根据需要及时更换。
人员定期培训

培训工作首先是针对专业技术人员进行培训,针对运行维护管理存在的重点和难点问题,组织专业技术人员进行各种专题的内部培训工作,并将技术人员送出去进行系统的相关知识培训,提高专业技术人员的专业技能
对电站操作人员的培训也是必不可少的,这部分人员通常是当地选派的,由于当地人员文化水平较低,因此培训工作首先从最基础的电工基础知识讲起,并进行光伏电站的理论知识培训、特种作业培训、实际操作培训和电站操作规程的学习。
经过培训后,使其了解和掌握光伏发电系统的基本工作原理和各设备的功能,并要达到能够按要求进行电站的日常维护工作,具有能判断一般故障的产生原因并能解决的能力。
建立通畅的信息通道

设立专人负责与电站操作人员和设备厂家的联系工作。当电站出现故障时,操作人员能及时将问题提交给相关部门,同时也能在最短的时间内通知设备厂家和维修人员及时到现场进行修理。
光伏电站怎样进行维护管理
建立完善的技术文件管理体系
对每个电站都要建立全面完整的技术文件资料档案,并设立专人负责电站技术文件的管理,为电站的安全可靠运行提供强有力的技术基础数据支持。
1.建立电站设备技术档案和设计施工图纸档案
这是电站的基本技术档案资料,主要包括:设计施工、竣工图纸;验收文件;各设备的基本工作原理、技术参数、设备安装规程、设备调试的步骤;所有操作开关、旋钮、手柄以及状态和信号指示的说明;设备运行的操作步骤;电站维护的项目及内容;维护日程和所有维护项目的操作规程;电站故障排除指南,包括详细的检查和修理步骤等。
2.建立电站的信息化管理系统
利用计算机管理系统建立电站信息资料,对每个电站建立一个数据库,数据库内容包括两方面,一是电站的基本信息,主要有:气象地理资料;交通信息;电站所在地的相关信息(如人口、户数、公共设施、交通状况等);电站的相关信息(如电站建设规模、设备基本参数、建设时间、通电时间、设计建设单位等)。二是电站的动态信息,主要包括:
(1)电站供电信息:用电户、供电时间、负载情况、累计发电量等;
(2)电站运行中出现的故障和处理 *** :对电站各设备在运行中出现的故障和对故障的处理 *** 等进行详细描述和统计。
3.建立电站运行期档案
这项工作是分析电站运行状况和制定维护方案的重要依据之一。日常维护工作主要是每日测量并记录不同时间系统的工作参数,主要测量记录内容有:日期、记录时间;天气状况;环境温度;蓄电池室温度;子方阵电流、电压;蓄电池充电电流、电压;蓄电池放电电流、电压;逆变器直流输入电流、电压;交流配电柜输出电流、电压及用电量;记录人等。当电站出现故障时,电站操作人员要详细记录故障现象,并协助维修人员进行维修工作,故障排除后要认真填写《电站故障维护记录表》,主要记录内容有:出现故障的设备名称、故障现象描述、故障发生时间、故障处理 *** 、零部件更换记录、维修人员及维修时间等。电站巡检工作应由专业技术人员定期进行,在巡检过程中要全面检查电站各设备的运行情况和运行现状,并测量相关参数。并仔细查看电站操作人员对日维护、月维护记录情况,对记录数据进行分析,及时指导操作人员对电站进行必要的维护工作。同时还应综合巡检工作中发现的问题,对本次维护中电站的运行状况进行分析评价,最后对电站巡检工作做出详细的总结报告。
4.建立运行分析制度
依据电站运行期的档案资料,组织相关部门和技术人员对电站运行状况进行分析,及时发现存在的问题,提出切实可行的解决方案。通过建立运行分析制度,一是有利于提高技术人员的业务能力,二是有利于提高电站可靠运行水平。
完善维护管理的项目内容
不断总结维护管理经验,制定详细的巡检维护项目内容,保证巡检维护时不会出现漏项检查的现象,维护工作水平不断提高。
1.光伏阵列
设计寿命能达到20年以上,其故障率较低,当然由于环境因素或雷击可能也会引起部件损坏。其维护工作主要有:
保持光伏阵列采光面的清洁。在少雨且风沙较大的地区,应每月清洗一次,清洗时应先用清水冲洗,然后用干净的柔软布将水迹擦干,切勿用有腐蚀性的溶剂冲洗,或用硬物擦拭。清洗时应选在没有阳光的时间或早晚进行。应避免在白天时,光伏组件被阳光晒热的情况下用冷水清洗组件,很冷的水会使光伏组件的玻璃盖板破裂。
定期检查光伏组件板间连线是否牢固,方阵汇线盒内的连线是否牢固,按需要紧固;检查光伏组件是否有损坏或异常,如破损,栅线消失,热斑等;检查光伏组件接线盒内的旁路二极管是否正常工作。当光伏组件出现问题时,及时更换,并详细记录组件在光伏阵列的具体安装分布位置。
检查方阵支架间的连接是否牢固,支架与接地系统的连接是否可靠,电缆金属外皮与接地系统的连接是否可靠,按需要可靠连接;检查方阵汇线盒内的防雷保护器是否失效,按需要进行更换。
2.蓄电池组
由于光伏电站是利用太阳能进行发电的,而太阳能是一种不连续、不稳定的能源,容易使得蓄电池组出现过充过放和欠充电的状态。蓄电池组是光伏电站中最薄弱的环节,应对蓄电池进行定期检查和维护观察蓄电池表面是否清洁,有无腐蚀漏液现象,若外壳污物较多,用潮湿布沾洗衣粉擦拭即可。观察蓄电池外观是否有凹瘪或鼓胀现象;每半年应至少进行一次电池单体间连接螺丝的拧紧工作,以防松动,造成接触不良,引发其它故障。在维护或更换蓄电池时,使用的工具(如扳手等)必须带绝缘套,以防短路。蓄电池放电后应及时进行充电。若遇连续多日阴雨天,造成蓄电池充电不足,应停止或缩短电站的供电时间,以免造成蓄电池过放电。电站维护人员应定期对蓄电池进行均衡充电,一般每季度要进行2~3次。对停用多时的蓄电池(3个月以上),应补充充电后再投入运行。冬季要做好蓄电池室的保温工作,夏季要做好蓄电池室的通风工作,蓄电池室温度应尽量控制在5℃~25℃之间。
每年要对蓄电池进行1~2次维护工作,主要是测量记录单体蓄电池电压和内阻等参数,将实际测量数据与原始数据进行比较,一旦发现个别单位电池的差异加大,应及时更换处理。
3.直流控制器及逆变器
直流控制器、逆变器通常十分可靠,可以使用多年。有时因设计不好,电子元器件经过长期运行可能会被损坏,雷击也可能导致元器件损坏。定期检查控制器、逆变器与其它设备的连线是否牢固,检查控制器、逆变器的接地连线是否牢固,按需要固紧;检查控制器、逆变器内电路板上的元器件有无虚焊现象、有无损坏元器件,按需要进行焊接或更换。
检查控制器的运行工作参数点与设计值是否一致,如不一致按要求进行调整。检查控制器显示值与实际测量值是否一致,以判断控制器是否正常。
4.防雷装置
定期测量接地装置的接地电阻值是否满足设计要求;定期检查各设备部件与接地系统是否连接可靠,若出现连接不牢靠,必须要焊接牢固;在雷雨过后或雷雨季到来之前,检查方阵汇流盒以及各设备内安装的防雷保护器是否失效,并根据需要及时更换。
5.低压配电线路
(1)架空线路
架空线路日常巡检主要是检查危及线路安全运行的内容,及时发现缺陷,进行必要的维护。巡视维护工作内容主要包括:架空线路下面有无盖房和堆放易燃物;架空线路附近有无打井、挖坑取土和雨水冲刷等威胁安全运行的情况;导线与建筑物等的距离是否符合要求;导线是否有损伤、断股,导线上有无抛挂物;绝缘子是否破损,绝缘子铁脚有无歪曲和松动,绑线有无松脱;有无电杆倾斜、基础下沉、水泥杆混凝土剥落露筋现象;拉线有无松弛、断股、锈蚀、底把上拨、受力不均、拉线绝缘子损伤等现象。
(2)照明配线
照明配线包括接户线、进户线和室内照明线路。因照明配线、室内负荷与人接触的机会多,更应加强管理维护,以确保安全运行。主要维护工作有:瓷瓶有无严重破损及脱落;墙板是否歪斜、脱落;导线绝缘是否破损、露芯,弛度松紧应适宜;各种绝缘物的支撑情况,导线的支撑是否牢固;有无私拉乱接现象;进户线上的熔丝盒是否完整,熔丝是否合格;导线以及各种穿墙管的外表情况;进户线的固定铅皮卡是否松动等。另外要检查接户线与建筑物的距离是否满足相关规程和规范要求。
加强人员培训
培训工作主要是针对两方面的人员进行,一是对专业技术人员进行培训,针对运行维护管理存在的重点和难点问题,组织专业技术人员进行各种专题的内部培训工作,并将技术人员送出去进行系统的相关知识培训,提高专业技术人员的专业技能;二是对电站操作人员的培训,这部分人员通常是当地选派的,由于当地人员文化水平较低,因此培训工作首先从最基础的电工基础知识讲起,并进行光伏电站的理论知识培训、特种作业培训、实际操作培训和电站操作规程的学习。经过培训后,使其了解和掌握光伏发电系统的基本工作原理和各设备的功能,并要达到能够按要求进行电站的日常维护工作,具有能判断一般故障的产生原因并能解决的能力。
建立通畅的信息通道
设立专人负责与电站操作人员和设备厂家的联系工作。当电站出现故障时,操作人员能及时将问题提交给相关部门,同时也能在最短的时间内通知设备厂家和维修人员及时到现场进行修理。
关于光伏发电的论文
一、项目概括
1.1项目简介及选址
本项目电站选址地位于湖南省湘潭市雨湖区的响塘学校屋顶上,经过去现场实地的了解和勘测后,此学习周围无森林无高大树木,附近也无任何其他房屋,距离其最近的房屋也有数十米的距离,该屋顶无女儿墙无其他建造物,是一个平面的屋顶,其屋长为43米,宽为32米。
本项目将在此学校屋顶上建造一个100kw的并网型光伏电站,实施全额上网措施。选址卫星图如图1-1所示,选址平面图如图1-2所示。
图1-1 选址地卫星图
图1-2 选址平面图
1.2 项目位置及气象情况
经过百度地图的计算,得出了此地经纬度为:北纬27.96,东经为112.83,是属于亚热带温湿气候区,典型的冬冷夏热气温,年降雨量充足达1450毫米,更高气温为夏季的41.8度,更低气温为冬季的-12.1度,年均气温17度。该项目所在地更高海拔为793米,更低海拔达30.7米,总的平均海拔为48.2米。该地年总辐射量经过PVsyst软件的计算后,得出了1116.6的值,不是特别高,属于第三类资源区,但建设一个电站也不是特别亏。湘潭市地理位置图如图1-3所示。
图1-3湘潭市地理位置
图1-4年均总辐射值
1.3项目设计依据
本项目设计依据如下:
《光伏发电站设计规范》GB50794-2012
《电力工程电缆设计规范》GB50217-1994
《光伏系统并网技术要求》GB/T19939-2005
《建筑太阳能光伏系统设计与安装》10J908-5
《光伏发电站接入电力系统技术规范》GB/T19964-2012
《光伏发电站接入电力系统设计规范》GB/T5086-2013
《光伏(PV)系统电网接口特性》GB/T20046-2006
《电能质量公用电网谐波》GB/T14549-19933
《电能质量三相电压允许不平衡度》GB/T15543-1995
《晶体硅光伏方阵I-V特性的现场测量》GB/T18210-2000
二、电站系统设计
2.1组件选型
组件是电站中造价更高的设备,投资一个电站几乎一半的钱是砸这组件上去了,为此我们选择的组件一定要是最适合本电站的,不管是组件效率还是组件的其他参数在同功率组件下都应该保持更佳,这样才不会亏本。
组件的类型有很多,以不同的材料来说,组件又分为了晶硅组件、薄膜组件,在电站中使用最多的便是晶硅型组件,而晶硅型组件又分为单晶硅和多晶硅,它们都是市场上十分热门的组价。
单晶硅的效率比多晶硅高了很多,其使用寿命时间也长了不少,但价格方面却比多晶硅高了很多,但考虑到平价上网的时代,单晶硅的价格远远不如过去那样昂贵,所以本电站选取的组件为单晶型组件。
表2-1伏组件对比表
组件品牌及型号
晶科
Swan Bifacial 400 72H
晶科
Swan Bifacial 405 72H
晶澳
JAM72S10 400MR
更大功率(Pmax)
400Wp
405Wp
400Wp
更佳工作电压(Vmp)
41V
41.2V
41.33V
组件转换效率(%)
19.54%
19.78%
19.9%
更佳工作电流(Imp)
9.76A
9.83A
9.68A
开路电压(Voc)
48.8V
49V
49.58V
短路电流(Isc)
10.24A
10.3A
10.33A
工作温度范围(℃)
-40℃~+85℃
-40℃~+85℃
-40℃~+85℃
更大系统电压
1000/1500V DC(IEC/UL)
1000/1500VDC(IEC/UL)
1000/1500VDC (IEC)
更大额定熔丝电流
20A
20A
20A
输出功率公差
0~+5W
0~+5W
0~+3%
更大功率(Pmax)的温度系数
-0.350%/℃
-0.35%/℃
-0.35%/℃
开路电压(Voc)的温度系数
-0.290%/℃
-0.29%/℃
-0.272%/℃
短路电流(Isc)的温度系数
0.048%/℃
0.048%/℃
0.044%/℃
名义电池工作温度(NOCT)
45±2℃
45±2℃
45±2℃
组件尺寸:长*宽*厚(mm)
2031*1008*30mm
2031*1008*30mm
2015*996*40mm
电池片数
72
72
72
之一款组件晶科Swan Bifacial 400 72H和第二款组件晶科Swan Bifacial 405 72H的型号牌子都一样,除功率和其效率有点差距之外,其他的参数基本一样,但其第二款组件晶科Swan Bifacial 405 72H组件的效率高,相同尺寸不同效率下,选择第二款组件更好。
第三款组件晶澳JAM72S10 400MR是3款组件里效率更高的组件,比之一款和第二款分别高了0.37%和0.12%,并且尺寸和部分温度系数也是3款里面最小的,开路电压和工作电压以及短路电流等参数也是3款组件中更高的,从数据上来看,第三款组件晶澳JAM72S10 400MR是3款里最棒的组件。
综合上面的分析,本项目最终选择第3款组件晶澳JAM72S10 400MR作为本项目的组件使用型号。组件图如图2-1所示。
图2-1 组件图
2.2更佳倾斜角和方位角设计
本电站建造在平面屋顶上,该屋顶无任何的倾角,由于组件是依靠着太阳光发电,但每时每刻太阳都是在运动着,为此便会与组件形成一个角度,该角度影响着组件的发电量,对于采取固定支架安装方式的电站来说,选择一个最合适的角度能够让电站发电量达到更高,因此更佳倾角这个概念便被引出了。
对于本电站而言,根据其PVsyst软件的计算后,得出了湘潭更佳倾角为18度时,方位为0度时,电站一年下来的发电量能够达到更高。PVsyst更佳方位角、倾斜角模拟图如图2-2所示。
图2-2 PVsyst更佳方位角、倾斜角模拟图
2.3组件排布方式
本项目选址地屋顶长43米,宽为29米,采取横向排布方式无法摆下其电站中的整个阵列,因此本项目组件方式采取竖向排布,中间间距20mm。如图2-3所示。
图2-3 组件排列方式
2.4组件间距设计
太阳照射到一个物体上时,由于该物体遮住了光,使得光不能直射到地上时,该物体便会产生一个阴影投射到地上,而电站中的组件也类似于此,前一个组件因光产生的阴影投射到另一个组件上时,被照射的组件便会受到影响,进而影响整个电站,这对于电站来说是一个严重的问题,因此在设计其组件之间的间距时,一定要保证阴影的距离不会触及组件。
图2-4间距图
在公式2-1中:
L是阵列倾斜面长度(4050mm)
D是阵列之间间距
β是阵列倾斜角(18°)
为当地纬度(27.96°)
把以上数值代入公式后计算得:
2-5组件计算图
根据结果,当电站中的子方阵间距大于2119mm时,子方阵与子方阵便不会受到影响。
图2-6方阵间距图
2.5逆变器选型
逆变器是电站中其转换电流的设备,十分的重要,而逆变器的种类比较多,对于本项目电站来说,选择组串式逆变器更佳,因此本项目选择了3款市场上热卖的组串式逆变器。
表2-2 逆变器参数对比表
逆变器品牌及型号
华为
SUN2000-100KTL-C1
华为
SUN2000-110KTL-C1
固德威
HT 100K
更大输入功率
100Kw
110Kw
150Kw
中国效率
98.1%
98.1%
98.1%
更大直流输入电压(V)
1100V
1100V
1100V
各MPPT更大输入电流(A)
26A
26A
28.5A
MPPT电压范围(V)
200 V ~ 1000 V
200 V ~ 1000 V
200V ~ 1000V
额定输入电压(V)
600V
600V
600V
MPPT数量/输入路数
10/20
10/20
10/2
额定输出功率(KW)
100K W
110K W
100K W
更大视在功率
110000 VA
121000 VA
110000 VA
更大有功功率 (cosφ=1)
110KW
121K W
110KW
额定输出电压
3 × 220 V/380 V, 3 × 230 V/400 V, 3W+N+PE
3 × 220 V/380 V, 3 × 230 V/400 V, 3W+N+PE
380, 3L/N/PE 或 3L/PE
输出电压频率
50 Hz,60Hz
50 Hz,60Hz
50 Hz
更大输出电流(A)
168.8A
185.7 A
167A
功率因数
0.8 超前—0.8 滞后
0.8超前—0.8滞后
0.99 (0.8超前—0.8滞后)
更大总谐波失真
<3%
<3%
3%
输入直流开关
支持
支持
支持
防孤岛保护
支持
支持
支持
输出过流保护
支持
支持
支持
输入反接保护
支持
支持
支持
组串故障检测
支持
支持
支持
直流浪涌保护
Type II
Class II
具备
交流浪涌保护
Type II
Class II
具备
绝缘阻抗检测
支持
支持
支持
残余电流监测
支持
支持
支持
尺寸(宽 x 高 x 厚)
1,035 x 700 x 365 mm
1,035 x 700 x 365 mm
1005*676*340
重量(kg)
85kg
85kg
93.5kg
工作温度(°C)
-25°C~60°C
-25°C~60°C
-25~60℃
3款逆变器的功率均在100kw以上,其效率也都是一模一样,均只有98.1%,其额定输出电压也都为600V,对于本电站来说,这3款逆变器都能使用,但可惜本电站只会从中选择一个最合适的品牌。
之一款逆变器华为SUN2000-100KTL-C1和第二款逆变器华为SUN2000-110KTL-C1是同种类同型号,但不同功率的逆变器,这两款逆变器大部分数据都一模一样,但第二款逆变器功率比之一款逆变器功率高了10k,比本电站的容量也高了10k,并且价格了略微高了那么点,选用之一款逆变器不仅省钱而且还不会造成功率闲置无处使用,更大发挥逆变器的作用,因此第1款比第2款逆变器好。
第三款逆变器是固德威HT 100K,它的更大输入功率高达150kw,明明是一个100kw的逆变器,但其输入功率却不同我们往常见的逆变器一样,它居然还高了50k,如果选用这款逆变器,那么阵列输入的功率超过100都能承受。虽然更大输入功率很恐怖,但其他参数正常,对比之一款逆变器,仅只是部分参数略微差了点,总体是几乎没什么太大的差别。
本项目根据上述的分析和对其逆变器的需求,最终选择了固德威HT 100K型逆变器为本电站逆变器。
2.6光伏阵列布置设计
2.6.1串并联设计
图2-7串并联计算
公式2-3、2-4中:
Kv——光伏组件的开路电压温度系数-0.00272
K——光伏组件的工作电压系数-0.0035
t/——光伏组件工作环境极限高温(℃)60
Vpm——光伏组件的工作电压(V)41.33
VMPPTmax——逆变器MPPT电压更大值(V)1000
VMPPTmin——逆变器MPPT电压最小值(V)200
Voc——光伏组件开路电压(V)49.58
N——光伏组件串联数(取整)
t——光伏组件工作环境极端低温(℃)-12.7
——逆变器允许的更大直流输入电压(V)1100
把以上数值代入公式中计算可得:
5.5≤N≤21
经计算,本电站最终选取20块组件为一阵列。如图2-6组件串并联设计图。
图2-8组件串并联设计图
2.6.2项目方阵排布
据2.6.1的结果,每一个阵列共有20块组件,单块组件的功率是400w,一个阵列便是8kw,而本电站的总容量为100kw,总计是需要13个阵列。本电站建设地屋顶长43米,宽为32米,可以完整的摆放电站中的所有子方阵。如图2-9所示。
图2-9项目方阵排布图
2.7基础与支架设计
2.7.1水泥墩设计
本电站所建地点是公办学校,属于公共建筑,如果使用其打孔安装方式,便有可能使得其屋顶因时间长久而漏水,一旦漏水便需要进行维修,这也是得花费一些金钱,又因是学校,开工去维修可能将使部分学生要做停课处理,因此为了避免这个麻烦,本电站还是选择最常见的水泥墩来做基础设计。
考虑到学校有许多的学生,突然出现了事故,作为电站建设者肯定会有责任,因此为了避免组件出现任何事故,特地将水泥墩设计为一个正方形,其长宽高都为500mm,这样的重量大大降低了事故的发生率。如图2-10水泥墩设计图和2-11电站整体水泥墩设计所示。
图2-10水泥墩设计
图2-11电站整体水泥墩设计图
2.7.2支架设计
都已经把基础设计水泥墩做好了,那么接下来则是考虑水泥墩上的支撑设备支架,对于支架的设计最重要的一点就是在选材上,一般电站中的支架会持续使用到电站报废为止,使用时间长达二十多年三十多年甚至更久,对此支架的选型便是十分的重要,其使用寿命必须得长,抗腐蚀能力强。如图2-12支架设计图所示。
图2-12支架设计图
2.8配电箱选型
配电箱在光伏电站里又分为直流配电箱和交流配电箱,对于本电站来说,是选择其交流配电箱。配电箱的容量是根据其逆变器的容量选择,必定不能小于其逆变器的容量,否则可能会出现配电箱过压的情况,然后给电站造成事故危险。
配电箱具备配电、汇电、护电等多种功能,是本电站必须要又的设备,经过配电箱型号的对比,本电站最终选择了昌松100kw光伏交流逆变器。
表2-3配电箱参数
项目名称
昌松100kw光伏交流配电箱
项目型号
100kw交流配电箱
额定功率
100KW
额定电流
780A
额定频率
50Hz
海拔高度
2500m
环境温度
-25~55℃
环境湿度
2%~95%,无凝霜
2.9电缆选配
电站分为两类电,一类是直流电,必须使用直流电缆运输;一类是交流电,必须使用交流电缆运输,切记不可以乱搭配使用,否则将会造成电缆出线问题,电站设备出现问题。
直流电缆选型一般都是选择PV1-F-1*4mm²光伏专用直流电缆
交流电缆:
P:逆变器功率100KW
U:交流电电压380V
COSΦ:功率因数0.8
=
=190A
=0.035Ω
=976W
线损率:976/100000=0.9%2%,符合光伏电缆设计要求。
据其计算结果和下图电缆参数表,本电站最终选择ZRC-YJV22 7Omm2交流电缆。如图2-13电缆参数图所示。
图2-13 电缆参数图
2.10防雷接地设计
防雷接地是绝大多数光伏电站都必须要做的,目的就是防止雷击破幻电站,损坏人民的生命以及财产,特别是对于本电站而言,建设点是在学校,而学校不仅人多而且易燃物也多,一旦雷击劈到电站上,给电站造成了任何事故,都有可能把整个学校给毁了,为此本电站一定需要做好防雷接地设计。
本电站防雷方式采取常用的避雷针进行避雷,接地则是为电站中各个设备接地端做好接地连接。
图2-14防雷接地设计图
2.11电气系统设计及图纸
本电站装机总容量为100kw,由260块光伏组件组成,形成了13个阵列,每个阵列20块组件,然后连接至逆变器,逆变器变电后接入配电箱,最后再连接国家电网。
图2-15电气系统设计图
三、电站成本与收益
3.1电站项目设备清单
根据当地市场的物价,预估出了一个本电站预计投资表。
表3-1设备清单表
序号
设备
型号
单位
数量
单价
(元)
价格
(万元)
1
组件
晶澳JAM72S10 400MR
块
260
1.77
18.4
2
逆变器
固德威HT 100K
台
1
3.3w
3.3
3
直流电缆
PV1-F-1*4mm²
米
1500
5.2
0.78
4
交流电缆
ZRC-YJV22 70mm2
米
100
72
0.72
5
支架
\
套
39
556
2.17
6
水泥墩
500*500*500mm
个
78
250
1.95
7
配电箱
昌松100kw光伏交流配电箱
台
1
1.3w
1.3
8
运输费
\
总
18
1000
1.8
9
其他
\
\
\
\
4.15
10
人工费
\
\
\
\
7
合计:41.57万元
3.2电站年发电量计算
本电站总容量为100kw,而电站选址地的年总辐射量为1116.6,首先发电量便达到了89328度电。
(式3-1)
Q=100*1116.6*0.8=89328度
Q——电站首年发电量
W——本项目电站总容量(85KW)
T——许昌市年日照小时数(1258.2H)
——系统综合效率(0.8)
任何设备一旦使用,便就开始慢慢磨损了,其效率也是一年比一年差,即便是光伏组件也不例外。组件首年使用一年后,为了适应其环境,自身的效率瞬间就降低2.5%,而后的每年则是降低0.7%,将至80%左右时,光伏组件也是已经运行了25年。
表3-2电站发电量
发电年数
功率衰减
年末功率
年发电量(kWh)
累计发电量(kWh)
第1年
2.5%
97.50%
89328.000
89328.000
第2年
0.7%
96.80%
87094.800
176422.800
第3年
0.7%
96.10%
86469.504
262892.304
第4年
0.7%
95.40%
85844.208
348736.512
第5年
0.7%
94.70%
85218.912
433955.424
第6年
0.7%
94.00%
84593.616
518549.040
第7年
0.7%
93.30%
83968.320
602517.360
第8年
0.7%
92.60%
83343.024
685860.384
第9年
0.7%
91.90%
82717.728
768578.112
第10年
0.7%
91.20%
82092.432
850670.544
第11年
0.7%
90.50%
81467.136
932137.680
第12年
0.7%
89.80%
80841.840
1012979.520
第13年
0.7%
89.10%
80216.544
1093196.064
第14年
0.7%
88.40%
79591.248
1172787.312
第15年
0.7%
87.70%
78965.952
1251753.264
第16年
0.7%
87.00%
78340.656
1330093.920
第17年
0.7%
86.30%
77715.360
1407809.280
第18年
0.7%
85.60%
77090.064
1484899.344
第19年
0.7%
84.90%
76464.768
1561364.112
第20年
0.7%
84.20%
75839.472
1637203.584
第21年
0.7%
83.50%
75214.176
1712417.760
第22年
0.7%
82.80%
74588.880
1787006.640
第23年
0.7%
82.10%
73963.584
1860970.224
第24年
0.7%
81.40%
73338.288
1934308.512
第25年
0.7%
80.70%
72712.992
2007021.504
3.3电站预估收益计算
根据湖南省的标准电价,我们电站发的每度电能够有0.45元收入,持续运行25年后,将会获得2007021.504*0.45=903159元,也就是90多万,减去我们为电站投资的41.57万,我们25年内能够获得大约50万的纯利润收入
参考文献
[1]王思钦.分布式光伏发电系统电能计量方案[J].农村电工,2019,27(09):37.
[2]谷欣龙.光伏发电与并网技术分析[J].科技资讯,2019,17(24):31+33.
[3]黄超辉,陈勇,任守宏.基于应用的光伏电站电缆优化设计[J].电子工业专用设备,2019,48(03):67-71.
[4]余茂全,张磊.基于PVSYST的光伏发电系统仿真研究[J].安徽水利水电职业技术学院学报,2019,19(02):35-39.
[5]谭阳.家用太阳能分布式光伏并网发电系统研究[J].电子 *** ,2019(09):94-95+91.
[6]石培进.发展分布式光伏电站的可行性分析[J].山东工业技术,2019(12):183.
[7]蒋飞. 光伏发电项目的投资决策 *** 研究[D].华东理工大学,2013.
[8]陈坤. 光伏发电系统MPPT控制算法研究[D].重庆大学,2013.
[9]徐瑞东. 光伏发电系统运行理论与关键技术研究[D].中国矿业大学,2012.
[10]任苗苗. 光伏发电三相并网逆变器的研究[D].兰州交通大学,2012.
工程管理学科概论论文
工程管理信息化就是充分利用信息技术以及现有信息资源,以提高企业工程管理水平的过程。下面是我为大家整理的工程管理学科概论论文,供大家参考。
工程管理学科概论论文范文一:工程管理中的沟通管理分析
工程管理是工程施工顺利进行的保障,而沟通管理是工程管理中的重点内容。在工程管理中要做好各部门之间的配合,做好设计部门与施工部门之间的信息交流,必须要有完美的沟通技巧和沟通管理体系。可以说,好的沟通技巧有利于双方之间交流和信息的互换,而好的沟通管理体系则是工程管理中必不可少的部分。但是,在目前的工程沟通管理中,还存在着很多问题,亟待解决。
1工程管理中沟通管理存在的问题
1.1工程管理中的内部沟通问题
在工程管理中,工程内部的管理人员和施工人员会存在着一定的沟通问题。很多施工人员对于管理人员的要求不能完全理解,处于敬畏心理又不敢多问,导致最终在工程施工中很多指标不符合管理人员的要求。工程施工人员与工程设计人员的沟通存在问题,当下的设计与施工往往是分开的,一般由单位的设计部门进行工程设计,而后再由施工人员按照设计图纸进行施工。在这个过程中,如果没有做好双方之间的沟通,便难以使工程施工安全符合设计要求,并且很多设计要求在施工中是根本不可能实现的,施工人员只能对设计人员的设计进行必要的改动。这导致了施工人员与设计人员之间的矛盾,给工程管理人员带来了管理上的困难。除此之外,施工人员之间也存在着内部沟通的问题。由于目前很多施工单位的施工人员都是临聘的,甚至很大一部分人没有相关的专业知识和经验。这方面的差距导致施工人员在施工过程中观点不一致,并且对于一些施工要求理解的不够透彻,导致工程施工出现一定的问题,并最终影响了整体的工程进度。
1.2工程管理中的外部沟通问题
在工程管理的沟通管理中,除了内部沟通存在问题外,外部沟通也存在着一定的问题,给沟通管理造成了困难。其中包括:工程承包者与业主的沟通,部分承包者没有完全理解业主的要求,在施工中为了追求利益更大化而忽视了业主的要求,或者懒于和业主沟通,导致双方出现矛盾,并影响了工程建设的效率;施工方与工程监理之间的沟通。监理的主要职责是对工程施工的质量进行监督,而目前的监理方式还相对落后,过于形式化。监理人员与施工方的沟通存在障碍,很多施工方不愿意与监理方进行沟通,导致监理方对于工程的施工信息掌握的程度较低,最终影响了工程管理的整体管理水平。
2工程管理中的沟通管理的对策
2.1制定合理的沟通计划
要解决当下工程中的沟通管理问题,需要制定一个合理的沟通计划,包括内部沟通计划和外部沟通计划。所制定的沟通计划必须要有双方的沟通背景(即什么情况下进行沟通)、沟通时间、沟通的内容及沟通的方式。在工程开展前,必须要列出沟通计划,然后在工程进行过程中,一旦出现问题需要进行沟通,便根据沟通计划进行。可以说,沟通计划是工程管理中沟通管理的基础,只有制定了相应计划,并且有效按照计划实施,才能够真正实现工程的沟通管理,最终实现工程管理中的内部沟通和外部沟通。
2.2建立多种沟通方式
工程管理中的沟通方式很多,而我们一般常用的为口头沟通与书面沟通两种沟通方式。对于一些书面难以说清的情况,或者急需要沟通的情况,或者口头沟通更为合适的情况,如内部施工人员之间的沟通,可以采用口头沟通方式;而对于一些比较严肃的、需要保留纸质备份的、长期考虑的事情,可以进行书面沟通。如工程施工人员与工程管理人员之间的沟通、设计人员与施工人员的一些需要采用图纸形式的沟通等等。关于书面沟通与口头沟通的具体方式。
2.3建立沟通渠道
要解决工程管理中的沟通管理问题,需要建立合理的沟通渠道。不管是内部沟通还是外部沟通,都需要有合理的沟通渠道作为沟通的基础和保证。由于每个人的工作经历、生活经历、教育经历以及所接触的文化的不同,在沟通方面都存在着或多或少的问题。因此,工程管理人员要尽可能的建立沟通渠道,为他们提供沟通的背景,保证沟通渠道的畅通,尽可能减少沟通中产生的误解。比如对于施工人员和设计人员之间的沟通,除了为他们提供沟通交流的机会,更重要的是要让设计人员能够有一定的渠道展示自己的设计作品,通过直观展示让施工人员真正理解设计的要求,并且在施工中努力达到设计要求。传统的沟通渠道主要为图纸,而现在,可以运用高科技的成果,比如工程建模进行沟通,这种方式能够清晰的将设计者的设计成果以立体的形式展示出来,从而更有利于设计者与施工人员之间的沟通。
2.4及时沟通
要解决工程管理中的沟通管理问题,必须做到及时沟通。在目前的工程沟通管理中,很多问题都是由于沟通不及时导致的。在工程建设中,沟通不及时可能会导致严重的后果,比如施工人员在施工中遇到疑问没有及时与设计人员进行沟通,根据自己的理解继续施工,最后可能导致工程的质量或者其他方面不符合设计要求,严重的可能需要返工,浪费了人力物力,也加大了施工成本。同样,工程施工方与业主的及时沟通也尤为重要,它们所蕴含的道理都是一样的。保证各方的及时沟通,不仅能够更大限度的保证工程质量,节约施工成本,也能够尽可能的满足客户要求。
3结束语
总之,目前我国工程管理中的沟通管理还存在着很多问题,需要我们在实践中加以解决。具体来说,其中的问题包括内部问题和外部问题,而要解决这些问题,需要制定合理的沟通计划,建立多种沟通方式,建立沟通渠道,并且要做到各部门各人员之间的及时沟通。这样才能够真正解决目前工程管理中存在的沟通管理问题,实现沟通管理水平的提高,最终提高工程施工效率,节约工程施工成本,提高工程整体质量。
工程管理学科概论论文范文二:建筑工程管理中项目管理法的应用
1两种现行的主流项目管理法的应用现状
1.1项目法施工管理。
对于项目法施工管理而言,主要存在的是三个方面的问题:①在项目成本管理责任制方面,项目管理制度缺乏应有的健全性,企业内部承包经营过程中存在着不少的问题以及弊端。实行项目法施工的基本要求之一就是要采取经济承包责任制。有的项目经济责任制落实的并不够好,甚至产生流于形式的状况。例如项目经理的积极性难以得到调动,部门之间的管理缺少应有的健全性,比如成本核算缺少层层检测,控制举措缺少,最终工程结束后成本核算持平亦或超出,毫无经济效益。②在材料成本管理方面,一方面依旧存在材料价格以及供货渠道不受施工单位管控的状况,在材料采购方面无法依照“三比一看”的相关标准实施,主要材料以及地方材料受外来因素的影响比较大;从另一层面上来看,材料损耗超过定额的现象依然在一定范围之内存在着,这就使项目成本的管控流于形式。③在劳动力成本的管控方面,依旧存在人浮于事、效率低下的状况。大量人力的浪费,提升了成本;在机械使用费用的管控方面,依旧存在机械闲置不合理、疏于保修,因此制约了机械使用,以至于经常超出预算的状况时常产生,从而导致施工企业普遍产生用自己的队伍和机械不如使用外部劳务和租赁设备的心理,制约了企业对机械设备和人力资源的投入,进而导致企业的市场竞争潜力和发展潜力遭受制约。
1.2项目经理责任制。
作为我国从西方发达国家引进的一种管理 *** ,在实际工作的过程中,常常只是存在于形式,存在着各种各样的不足之处。这与项目经理责、权、利模糊有着关键的原因。具体而言,项目经理制的应用现状主要是:①企业缺乏健全的机制,国有建筑施工单位的项目组织在一些偏远地区依然实施的是线性组织模式,实行的是矩阵式,项目管理层级以及职能部门依旧处在“磨合期”阶段,低下的工作绩效使工作长期都处在一种事倍功半的状态之下。对于这些地区而言,增强成本管控,是一项长期而充满着艰巨性的工程。②当前的项目经理制缺乏应有的科学性,对于一部分施工单位而言,项目经理部是一个临时性质的责任组织,里面的人员都是临时懂凑西拼组合而来,素质出现参差不齐是常有的事,项目经理不过是施工单位的传话筒,最多不过是个组织现场的组织者罢了,一般项目经理都不会涉及大量人、财、物的管理。③项目经理制的项目经理自身存在问题,由于项目经理自身缺乏应该有的具体经验加之不懂技术,是个外行,导致项目经理中的人员调动十分频繁,项目经理对于进度计划以及预算都设定了较高的目标,这就使项目失去控制,经常产生变动,对于一些关键文件缺乏及时颁发,导致文件出现错误。除此而外,项目缺少应有的技术性,经理只是在被动应付,成了所谓的“消防队长”,到处“救火”,疲于奔命,这就造成了项目经理过多将经理放在自己熟悉的地方,缺少应有的全局观念。
2两种现行的主流项目管理法的应用建议
2.1项目法施工管理。
针对以上存在的各种问题,一定要采取综合、整体、全面的方式加以规范,从而提升企业的整体效益。具体要做到:之一,规范约束机制,依照科学流程来办事。在设计单位,建设单位、施工单位中施行各种形式的联合承包,并通过合同形式确定下来,构成一种风险共同承担、利益共同享受、连锁互保的约束体制。第二,建立和健全完善科学合理的承包机制。承包经营责任制,一定要确保国家财政收入和企业发展后劲。第三,强化内部承包的制约机制,促进承包单位执行起来合理化、规范化,其一是要教育承包人依法经营,构建良好的法制理念;其二是强化内部监管,对财务状况要进行定期检查,其三是构建科学合理的规章机制,堵塞相关漏洞;其四是使内部审计制度得到强化。第四,进一步增强企业管控,要践行好基础的相关工作,克服用包代管的混乱现状。在进行预算过程中,要尽可能对其强化,不但如此,对限额也要进行规划,增强计划管理等基础管理机制。第五,增强成本管控。对一些定期以及不定期的财务活动进行分析,正确对承包单位的经营成果进行反映。第六,增强精神文明建设,承包中要将精神文明融合到承包合同中去,切实做到两个文明一起抓。
2.2项目经理责任制。
之一,完善制度,严格落实项目经理制的管理权限,确保项目经理部门工作的科学开展,公司需制定并出台《工程管理实行项目经理制的实施方案》,对项目经理制的实施范畴、奖惩机制、项目经理部构建原则以及程序进行确定,不但如此,和项目管理部之间的联系也要加以明确,项目经理职责权限和相关部门以及公司领导间的关系也要做出详细明确的规定,令项目经理制的落实具备制度性、规范性。第二,健全组织结构,配全专业人员,项目经理部要根据工程管理的规律以及工程落实计划,建立完善的项目经理结构,就需匹配具有较高专业素养、工程经验丰富、工作责任心强、具有牺牲精神、工作能力以及协调能力强的专业技术工作者们作为项目各个专业的负责人,主要配备结构工程工作者、电气设备工作者、给排水及空调设备工作者等相关专业人员,要基本满足工程管理和落实的需求。第三,订立工程 *** 规划,增强工程管控水平。项目经理部需要根据总工期计划,对工程进度 *** 计划以及保证举措予以落实。依照工程特色和分布状况要制定相关工程管理机制,制定多个节点工程,在确保安全以及质量的基础上,多采取举措。提高工程施工的总体进程,具体要做到:其一是施工单位技术人员入驻设计单位,辅助设计人员细化图纸并及时交底,其二是要多次组织用户单位进行分意见反应,快速确定规模以及功能需求,其三是组织处理现场问题,尽可能减少设计人员来到现场的时间,确保设计时间。工程还需严格依照 *** 计划检查工程进程,当天任务一定要当天完成。
3结论
版权声明
本文仅代表作者观点,不代表本站立场。
本文系作者授权发表,未经许可,不得转载。