首页 黑客接单正文

精细化工生产技术论文1600字(精细化工的发展趋势论文3000字)

论文纳米技术在精细化工产品中的应用现状怎么写

论文纳米技术在精细化工产品中的应用现状怎么写

联氨具有挥发性,各种气体在水中的溶解度均下降,这时的水不再具有溶解气体的能力。 在电厂中常用的化学除氧的药品有亚 *** 钠。 化学除氧是往水中加入化学药品以除去水中的氧。因为锅炉给水本身就必须加热,温度越高,联氨也称肼。例如,不会带来水汽质量的污染问题,以替代亚 *** 钠和联氨;而亚 *** 钠使用时会增加水中盐含量、流动通畅以及水汽之间有足够的接触时间,反应产物和药品本身对锅炉的运行无害等条件,而且这种 *** 不需要加入化学药剂,有毒。

求一篇1500字论文

绿色催化剂的应用及进展

摘要]对新型绿色催化剂杂多化合物的研究进展进行了综述,主要介绍了杂多化合物在催化氧化、烷基化、异构化等石油

化工领域的研究现状,并对其应用和发展前景做了总结和评述。

[关键词]杂多化合物;绿色化工催化剂;展望

随着人们对环保的日益重视以及环氧化产品应

用的不断增加,寻找符合时代要求的工艺简单、污染

少、绿色环保的环氧化合成新工艺显得更为迫切。20

世纪90年代后期绿色化学[1,2]的兴起,为人类解决化

学工业对环境污染,实现可持续发展提供了有效的手

段。因此,新型催化剂与催化过程的研究与开发是实

现传统化学工艺无害化的主要途径。

杂多化合物催化剂泛指杂多酸及其盐类,是一类

由中心原子(如P、Si、Fe、B等杂原子及其相应的无机

矿物酸或氢氧化物)和配位原子(如Mo、W、V、Ta等多

原子)按一定的结构通过氧原子桥联方式进行组合的

多氧簇金属配合物,用HPA表示[3-6]。HPA的阴离子结

构有Keggin、Dawson、Anderson、Wangh、Silverton、

Standberg和Lindgvist 7种结构。由于杂多酸直接

作为固体酸比表面积较小(<10 m2/g),需要对其固

载化。固载化后的杂多酸具有“准液相行为”和酸碱

性、氧化还原性的同时还具有高活性,用量少,不腐蚀

设备,催化剂易回收,反应快,反应条件温和等优点而

逐渐取代H2SO4、HF、H *** O4应用于催化氧化、烷基化、异

构化等石油化工研究领域的各类催化反应。

1杂多酸在石油化工领域的研究进展

随着我国石油化工工业的快速发展,以液态烃为

原料制取乙烯的生产能力在不断增长,而产生的副产

物中有大量的C3~C9烃类,其化工综合利用率却仍然

较低,随着环保法规对汽油标准中烯烃含量的严格限

制,如何在不降低汽油辛烷值的情况下,生产出高标

号的环境友好汽油已是我国炼油业面临的又一个技

术难题。目前,催化裂化副产物C3~C9烃类的催化氧

化、烷基化、芳构化以及C3~C9烃类的回炼技术已成

为研究的热点。因此,催化裂化C3~C9烃类的开发与

应用将有着强大的生产需求和广阔的市场前景。

1.1催化氧化反应

杂多酸(盐)作为一类氧化性相当强的多电子氧

化催化剂,其阴离子在获得6个或更多个电子后结构

依然保持稳定。通过适当的 *** 易氧化各种底物,并

使自身呈还原态,这种还原态是可逆的,通过与各种

氧化剂如O2、H2O2、过氧化尿素等相互作用,可使自身

氧化为初始状态,如此循环使反应得以继续。用杂多

酸作催化剂使有机化合物催化氧化作用有两种路线

是可行的[7]:①分子氧的氧化:即氧原子转移到底物

中;②脱氢反应的氧化。

将直链烷烃进行环氧化是生产高辛烷值汽油的

重要途径之一。Bregeault等[8]研究了在CHCl3-H2O

两相中,在作为具有催化活性的过氧化多酸化合物的

前体的杂多负离子[XM12O40]n-和[X2M18O62]m-以及同多

负离子[MxOy]z-(M=Mo6+或W6+;X=P5+,Si4+或B3+)的存在

下,用过氧化氢进行1-辛烯的环氧化反应时,负离子

[BW12O40]5-、[SiW12O40]4-和[P2W18O62]6-都是非活性的,并

且许多光谱分析法表明它们的结构在反应过程中没

有发生变化。[PMo12O40]3-表现出很低的活性,而

[PW12O40]3-、H2WO4和[H2W12O42]10-都表现出高活性。反应

中Keggin型杂多负离子[PW12O40]3-被过量的过氧化

氢分解而形成过氧化多酸{PO4[WO(O2)2]4}3-和

[W2O3(O2)4(H2O)2]2-,而这两种活性物种在环氧化反应

中起到了重要的作用。

1.2烷基化反应

石油炼制工业上,烷烃烷基化、烯烃烷基化及芳烃烷基化反应是生产高辛烷值清洁汽油组分的环境

友好工艺。但以浓 *** 和氢氟酸作为催化剂的传统烷

基化工艺因氢氟酸的毒性和浓 *** 的严重腐蚀性受

到了很大的限制。

C4抽余液是蒸气裂解装置产生的C4馏份经抽提

分离丁二烯后的C4剩余部分,其中富含大量的1-丁

烯和异丁烯。如何利用C4抽余液中的异丁烯和1-丁

烯是C4抽余液化工利用的关键。异丁烯是一种重要

的基本有机化工原料,主要用于制备丁基橡胶和聚异

丁烯,也用来合成甲基丙烯酸酯、异戊二烯、叔丁酚、

叔丁胺等多种有机化工原料和精细化工产品。1-丁

烯是一种化学性质比较活泼的a-烯烃,其主要用途

是作为线性低密度聚乙烯(LLDPE)的共聚单体,也用

于生产聚丁烯、聚丁烯酯、庚烯和辛烯等直链或支链

烯烃、仲丁醇、甲乙酮、顺酐、环氧丁烷、醋酸、营养药、

农药等。特别是自20世纪70年代LLDPE工业化技术

开发成功以来,随着LLDPE工业生产的蓬勃发展,国

内外对1-丁烯的需求与日俱增,已成为发展最快的

化工产品之一。

刘志刚[9]等用浸渍法制备了Cs+、K+、NH4+的SiPW12

杂多酸盐类和SiO2负载的SiPW12杂多酸,在超临界

条件下评价了它们对异丁烷和丁烯烷基化的催化作

用。结果表明,它们的活性和选择性大小顺序是当阳

离子数相同时,Cs+盐>K+盐>NH4+盐。

(NH4)2.5H1.5SiW12O40尽管催化活性不高,但对C8产物的

选择性达到83.48%;Cs2.5H1.5SiW12O40具有很高的催化

活性,但其对C8产物的选择性却只有62.47%。

1.3异构化反应

汽油的抗爆性用异辛烷值表示,直链烃异构化是

生产高辛烷值汽油的重要手段。C5~C6烷烃骨架异构

化旨在提高汽油总组成的辛烷值,反应受平衡限制,

低温有利于支链异构化热动力学平衡。为达到更大的

异构化油产率,C5~C6烷烃异构化应在尽可能低的温

度和高效催化剂存在下进行。烷烃骨架异构化是典型

的酸催化反应,最近发现有较多的固体酸材料(其酸

强度高于H-丝光沸石)可用于轻质烷烃骨架异构化,

其中,最有效的有基于杂多酸(HPA)的催化材料和硫

酸化氧化锆、钨酸化氧化锆(WOx-ZrO2)。

2绿色催化剂

绿色化学对催化剂也提出了相应的要求[1,2]:(1)

在无毒无害及温和的条件下进行;(2)反应应具有高

的选择性,人们将符合这两点的催化剂称之为绿色催化剂。

由于一些杂多酸化合物表现出准液相行为,极性

分子容易通过取代杂多酸中的水分子或扩大聚合阴

离子之间的距离而进入其体相中,在某种意义上吸收

大量极性分子的杂多酸类似于一种浓溶液,其状态介

于固体和液体之间,使得某些反应可以在这样的体相

内进行。作为酸催化剂,其活性中心既存在于“表相”,

也存在于“体相”,体相内所有质子均可参与反应,而

且体相内的杂多阴离子可与类似正碳离子的活性中

间体形成配合物使之稳定。杂多酸有类似于浓液的

“拟液相”,这种特性使其具有很高的催化活性,既可

以表面发生催化反应,也可以在液相中发生催化反

应。准液相形成的倾向取决于杂多酸化合物和吸收分

子的种类以及反应条件。正是这种类似于“假液体”的

性质致使杂多酸即可作均相及非均相反应,也可作相

转移催化剂。陈诵英[10]等用二元杂多酸为催化剂,双

氧水为氧化剂,醋酸为溶剂,催化氧化三甲基苯酚

(TMP)合成三甲基苯醌(TMBQ),这与传统 *** 先用发

烟 *** 磺化TMP,然后在酸性条件下用固体氧化剂氧

化得到TMBQ相比,能减少排放大量废水以及10 t以

上的固体废物,且其摩尔收率可达86%,大大提高了

原子利用率。刘亚杰[11]等采用一种性能优良的环境友

好的负载型杂多酸催化剂(HRP-24)合成二十四烷基

苯。HR-24属于一种大孔、细颗粒、强酸性的固体酸

催化剂,大孔和细颗粒有利于大分子烯烃的扩散,且

不容易被长链烯烃聚合形成的胶质堵塞孔道,而强酸

性可使催化剂在较低温度下就具有较高的催化活性。

实验表明,在反应温度和压力较低的情况下(120℃

和0.1~0.2 MPa),烯烃的转化率和二十四烷基苯的

选择性都接近100%。Furuta等[12]采用Pd-H3SiW12O40

催化乙烯在氧气和水存在下氧化一步合成了乙酸乙

酯,简化合成工艺,与绿色化学相适应。刘秉智[13]以活

性炭负载磷钼钨杂多酸为催化剂,用30%双氧水催化

氧化苯甲醇合成苯甲醛,苯甲醛收率可达74.8%。与

国内同类产品的生产工艺相比,其具有催化活性好,

反应条件温和,生产成本低廉,催化剂可重复使用,对

设备无腐蚀性,不污染环境,是一种优良的新型合成

工艺路线,具有一定的工业开发前景。

3展望

虽然绿色化工催化剂理论发展逐渐得到完善,但

大多数催化剂仍停留在实验阶段,催化剂性能不稳

定,制备过程复杂,性价比低是制约其工业化应用的

主要原因,但从长远角度考虑,采用绿色化工催化剂

是实现生产零污染的一个必然趋势。环境友好的负载

型杂多酸催化剂既能保持低温高活性、高选择性的优

点,又克服了酸催化反应的腐蚀和污染问题,而且能

重复使用,体现了环保时代的催化剂发展方向。今后

的研究重点应是进一步探明负载型杂多酸的负载机

制和催化活性的关系,进一步解决活性成分的溶脱问

题,并进行相关的催化机理和动力学研究,为工业化

技术提供数据模型,使负载型杂多酸早日实现工业化

生产,为石油化工和精细化工等行业创造更大的经

济、社会效益。

求更佳答案

找一篇石油化工类的论文

石油化工的范畴以石油及天然气生产的化学品品种极多、范围极广。石油化工原料主要为来自石油炼制过程产生的各种石油馏分和炼厂气,以及油田气、天然气等。石油馏分(主要是轻质油)通过烃类裂解、裂解气分离可制取乙烯、丙烯、丁二烯等烯烃和苯、甲苯、二甲苯等芳烃,芳烃亦可来自石油轻馏分的催化重整。石油轻馏分和天然气经蒸汽转化、重油经部分氧化可制取合成气,进而生产合成氨、合成甲醇等。从烯烃出发,可生产各种醇、酮、醛、酸类及环氧化合物等。随着科学技术的发展,上述烯烃、芳烃经加工可生产包括合成树脂、合成橡胶、合成纤维等高分子产品及一系列制品,如表面活性剂等精细化学品,因此石油化工的范畴已扩大到高分子化工和精细化工的大部分领域。石油化工生产,一般与石油炼制或天然气加工结合,相互提供原料、副产品或半成品,以提高经济效益(见石油化工联合企业)。 编辑本段石油化工的作用 1.石油化工是能源的主要供应者石油化工,主要指石油炼制生产的汽油、煤油、柴油、重油以及天然气是当前主要能源的主要供应 石油者。我国1995年生产了燃料油为8千万吨。目前,全世界石油和天然气消费量约占总能耗量60%;我国因煤炭使用量大,石油的消费量不到20%。石油化工提供的能源主要作汽车、拖拉机、飞机、轮船、锅炉的燃料,少量用作民用燃料。能源是制约我国国民经济发展的一个因素,石油化工约消耗总能源的8.5%,应不断降低能源消费量。 2.石油化工是材料工业的支柱之一金属、无机非金属材料和高分子合成材料,被称为三大材料。全世界石油化工提供的高分子合成材料目前产量约1.45亿吨,1996年,我国已超过800万吨。除合成材料外,石油化工还提供了绝大多数的有机化工原料,在属于化工领域的范畴内,除化学矿物提供的化工产品外,石油化工生产的原料,在各个部门大显身手。 3.石油化工促进了农业的发展农业是我国国民经济的基础产业。石化工业提供的氮肥占化肥总量的80%,农用塑料薄膜的推广使用,加上农药的合理使用以及大量农业机械所需各类燃料,形成了石化工业支援农业的主力军。 4.各工业部门离不开石化产品现代交通工业的发展与燃料供应息息相关,可以毫不夸张地说,没有燃料, 就没有现代交通工业。金属加工、各类机械毫无例外需要各类润滑材料及其它配套材料,消耗了大量石化产品。全世界润滑油脂产量约2千万吨,我国约180万吨。建材工业是石化产品的新领域,如塑料关材、门窗、铺地材料、涂料被称为化学建材。轻工、纺织工业是石化产品的传统用户,新材料、新工艺、新产品的开发与推广,无不有石化产品的身影。当前,高速发展的电子工业以及诸多的高新技术产业,对石化产品, 尤其是以石化产品为原料生产的精细化工产品提出了新要求,这对发展石化工业是个巨大的促进。 5.石化工业的建设和发展离不开各行的支持 石油化工国内外的石化企业都是集中建设一批生产装置,形成大型石化工业区。在区内,炼油装置为“龙头”,为石化装置提供裂解原料,如轻油、柴油,并生产石化产品;裂解装置生产乙烯、丙烯、苯、二甲苯等石化基本原料;根据需求建设以上述原料为主生产合成材料和有机原料的系列生产装置,其产品、原料有一定比例关系。如要求年产30万吨乙烯,粗略计算,约需裂解原料120万吨, 对应炼油厂加工能力约250万吨,可配套生产合成材料和基本有机原料80 ~ 90万吨。由此可见, 建设石化工业区要投入大量资金,厂区选址适当,不但要保证原料和产品的运输,而且要有充分的电力、水供应及其他配套的基础工程设施。各生产装置需要大量标准、定性的机械、设备、仪表、管道和非定型专用设备。 制造机械设备涉及材料品种多,要求各异,有些重点设备高速超过50米,单件重几百吨;有的要求耐热1000°C,有的要求耐冷 - 150°C。有些关键设备需在国际市场采购。所有这些都需要冶金、电力、机械、仪表、建筑、环保各行业支持。 石化行业是个技术密集型产业。生产 *** 和生产工艺的确定,关键设备的选型、选用、制造等一系列技术,都要求由专有或独特的技术标准所规定, 如从国外引进,要支付专利或技术诀窍使用费。因此,只有加强基础学科,尤其是有机化学、高分子化学、催化、化学工程、电子计算机、自动化等方面的研究工作,加强相关专业技术人员的培养,使之掌握和采用先进科研成果,再配合相关的工程技术,石化工业才有可能不断发展,登上新台阶。 编辑本段石油化工的发展石油化工的发展与石油炼制工业、以煤为基本原料生产化工产品和三大合成材料的发展有关。石油炼制起 石油炼制源于19 世纪20年代。20世纪20年代汽车工业飞速发展,带动了汽油生产。为扩大汽油产量,以生产汽油为目的热裂化工艺开发成功,随后,40年代催化裂化工艺开发成功,加上其他加工工艺的开发,形成了现代石油炼制工艺。为了利用石油炼制副产品的气体,1920年开始以丙烯生产异丙醇,这被认为是之一个石油化工产品。20世纪50年代,在裂化技术基础上开发了以制取乙烯为主要目的的烃类水蒸汽高温裂解 简称裂解)技术,裂解工艺的发展为发展石油化工提供了大量原料。同时,一些原来以煤为基本原料(通过电石、煤焦油)生产的产品陆续改由石油为基本原料,如氯乙烯等。在20世纪30年代,高分子合成材料大量问世。按工业生产时间排序为:1931年为氯丁橡胶和聚氯乙烯,1933年为高压法聚乙烯,1935年为丁腈橡胶和聚苯乙烯,1937年为丁苯橡胶,1939年为尼龙66。第二次世界大战后石油化工技术继续快速发展,1950年开发了腈纶, 1953年开发了涤纶,1957年开发了聚丙烯。 编辑本段石油化工高速发展的原因是有大量廉价的原料供应(50 ~ 60年代,原油每吨约15美元);有可靠的、有发展潜力的生产技术;产品应用广泛,开拓了新的应用领域。原料、技术、应用三个因素的综合,实现了由煤化工向石油化工的转换,完成了化学工业发展史上的一次飞跃。 20世纪70年代以后,原油价格上涨(1996年每吨约170美元),石油化工发展速度下降,新工艺开发趋缓, 并向着采用新技术,节能,优化生产操作,综合利用原料,向下游产品延伸等方向发展。一些发展中国家大力建立石化工业,使发达国家所占比重下降。1996年,全世界原油加工能力为38亿吨,生产化工产品用油约占总量的10%。 编辑本段石油化工在国民经济中的地位石油化工是近代发达国家的重要基干工业由石油和天然气出发,生产出一系列中间体、塑料、合成纤维、合成橡胶、合成洗涤剂、溶剂、涂料、农药、染料、医药等与国计民生密切相关的重要产品。80年代,在工业发达国家中,化学工业的产值,一般占国民生产总值 6%~7%,占工业总产值7%~10%;而石油化工产品销售额约占全部化工产品的45%,其比例是很大的。 石油化工2石油化工是能源的主要供应者石油炼制生产的汽油、煤油、柴油、重油以及天然气是当前主要能源的主要供应者。我国1995年生产了燃料油为8千万吨。目前,全世界石油和天然气消费量约占总能耗量60%;我国因煤炭使用量大,石油的消费量不到20%。石油化工提供的能源主要作汽车、拖拉机、飞机、轮船、锅炉的燃料,少量用作民用燃料。能源是制约我国国民经济发展的一个因素,石油化工约消耗总能源的8.5%,应不断降低能源消费量。 石油化工是材料工业的支柱之一金属、无机非金属材料和高分子合成材料,被称为三大材料。全世界石油化工提供的高分子合成材料目前产量约1.45亿吨,1996年,我国已超过800万吨。除合成材料外,石油化工还提供了绝大多数的有机化工原料,在属于化工领域的范畴内,除化学矿物提供的化工产品外,石油化工生产的原料,在各个部门大显身手。 石油化工促进了农业的发展农业是我国国民经济的基础产业。石化工业提供的氮肥占化肥总量的80%,农用塑料薄膜的推广使用,加上农药的合理使用以及大量农业机械所需各类燃料,形成了石化工业支援农业的主力军。 石油化工可创造较高经济效益。以美国为例,以50亿美元的石油、天然气原料,可生产100亿美元的烯烃、苯等基础石油化学品,进一步加工得240亿美元的有机中间产品(包括聚合物),最后转化为400亿美元的最终产品。当然,原料加工深度越深,产品越精细,一般来说成本也相应增加。 编辑本段世界石油化工1970年,美国石油化学工业产品,已有约3000种。资本主义国家所建生产厂已约1000个。国际上常用乙烯和几种重要产品的产量来衡量石油化工发展水平。乙烯的生产,大多采用烃类高温裂解 *** 。一套典型乙烯装置,年产乙烯一般为300~450kt,并联产丙烯、丁二烯、苯、甲苯、二甲苯等。乙烯及联产品收率因裂解原料而异。目前,这类装置已是石油化工联合企业的核心。 70年代以前,世界石油化工的生产基地主要分布在美国、日本及欧洲等国。1973年后世界原油价格不断上涨,1983年以来又趋下跌,价格大起大落,使石油化工企业者对原料稳定、持久供应产生忧虑。发达国家改革生产结构,调整设备开工率,以适应新的经济形势。发展中国家尤其是产油国近年则在大力发展石油化工。80年代,世界乙烯生产能力的分布已发生变化,亚非拉等发展中国家所占比例有所提高。如将东欧国家的乙烯生产能力计算在内,则这些新兴石油化工生产地区的乙烯生产能力,约占世界乙烯总生产能力的四分之一。 1958年,世界乙烯生产能力达到49Mt(不包括社会主义国家),其中新增乙烯生产能力约3.3Mt,约1/3建在非洲和中东地区,1/3建在拉美和东欧;传统石油化工生产地区,只新增生产能力800kt,且今后五年内,计划也很少新建乙烯装置,主要是进行现有装置的技术改造。 编辑本段中国石油化工起始于50年代,70年代以后发展较快,建立了一系列大型石油化工厂及一批大型氮肥厂等,乙烯及三大合成材料有了较大增长。 中国石油化工行业占工业经济总量的20%,因而对国民经济非常重要。石油化工行业包括石油石化和化工两个大部分,这两大部分在2006年都保持了较快地增长。如果把这两个部分作为一个整体来看,2006年石油化工累计实现的利润达到了4345亿,增长达到了17.9%,增量达到了658亿元,在整个规模以上工业新增利润中占到17%左右。 石油化工32007年前三季度全行业实现现价工业总产值38211亿元,同比增长20.2%。重点跟踪的65种大宗石油和化工产品中,产量较2006年同期增长的有62种,占95.4%,其中增幅在10%以上的有47种,占72.3%,天然气、电石、纯苯、甲醇、轮胎外胎等产品产量呈较快增长态势。 原油及加工制品平稳增长。2007年前三季度,全国原油生产较为平缓,天然气产量则增长较快。2007年1~9月累计生产原油13992.6万吨,同比增长1.4%;天然气累计产量为501.4亿立方米,同比增长19.8%。原油加工量24289.1万吨,同比增长7.0%。汽、煤、柴油产量继续保持稳定增长,累计生产汽油4475.9万吨,同比增长8.5%;生产煤油867万吨,同比增长17.4%;生产柴油9175.1万吨,同比增长6.1%。 农化产品生产供应正常。由于农业生产的季节性特征,农用化学品生产也呈现比较强的季节性。化肥(折纯)2007年1~9月累计产量为4310.5万吨,同比增长13.8%,其中氮肥3144.7万吨,同比增长12.2%。2007年前三季度,农药原药累计产量为127.4万吨,同比增长20.6%,杀虫剂、除草剂产量增幅分别为10.7%和33.3%,农药产品结构进一步改善,杀虫剂占农药的比例已下降到37.1%。 展望 以石油和天然气原料为基础的石油化学工业,虽然在70年代经历两次价格上涨的冲击,但由于石油化工已建立起整套技术体系,产品应用已深入国防、国民经济和人民生活各领域,市场需要尤其在发展中国家,正在迅速扩大,所以今后石油化工仍将得到继续发展。80年代,世界石油化工所耗石油量仅为世界原油总产量的8.4%,所耗天然气为天然气总产量10%,更由于从石油和天然气生产化工品可取得很大的经济效益,故石油化工的发展有着良好的前景。为了适应近年原料价格波动,石油化工企业正在采取多种措施。例如,生产乙烯的原料多样化,使烃类裂解装置具有适应多种原料的灵活性;石油化工和炼油的整体化结合更为密切,以便于利用各种原料;工艺技术的改进和新催化剂的采用,提高产品收率,降低生产过程的能耗及原料消耗;调整产品结构,发展精细化工,开发具有特殊性能、技术密集型新产品、新材料,以提高经济效益,并对石油化工生产环境污染进行防治等。 编辑本段石油化工专业石油化工专业是伴随着中国的石油化工的发展同时产生的化工学习专业课程,目的是培养石油化工人才,石油化工专业技术专业人才,一般各大理工科院校都设有此专业,该专业主要课程涉及:计算机应用、英语、有机化学、物理化学、化工分析、 化工原理、石油加工工程系、化工节能、化工设备、化工安全与环保、精细化工,质量管理。 就业方向:石油、化工、医药、食品等企业生产操作与管理。 ☆工业分析与检验专业: 主要课程:计算机应用、英语、有机化学、无机化学、化工分析、电化学分析、光学分析 、常规仪器分析、化工安全与环保。 就业方向:石油加工、石油化工、精细化工、医药、食品企业和环保部门从事化验分析操作与管理。 编辑本段现代以石油化工为基础的三大合成材料塑料、合成橡胶、合成纤维

高分求论文一篇``~~

摘要:通过几种成膜助剂与乳液相容性的考察,讨论了其对乳液的粘度、冻融稳定性、贮存稳定性、更低成膜温度及涂料性能的影响。

关键词:成膜助剂在乳胶漆中的应用 ;应用

1前言

建筑涂料在涂料工业中占有很重要的地位,目前,国内建筑涂料在涂料中的比重日渐增大。随着人们生活水平的口益提高.对建筑用乳胶漆的质量要求也越来越高,而涂料成膜的好坏直接影响涂层的性能。

一般人们认为乳胶漆在较短的时间内就能完全成膜,而忽略了各个成膜阶段的温度控制,特别是外用乳胶漆在施工后的温度变化较大,使最终涂层的性能不理想,如光泽下降、附着力差、耐擦洗性差、耐沾污性不良、耐候性不理想等等。有效地添加成膜助剂,可较大幅度地降低成膜温度,是改善乳胶漆低温施工性能的有效措施。本文对几种成膜助剂在乳胶漆中的应用进行了一系列实验,对建筑用乳胶漆的配方设计具有一定的参考作用。

2实验部分

与溶剂型涂料不同,乳胶漆的成膜机理一般分为以下过程:

之一,充填过程。乳胶漆施工后,水分挥发,当乳胶微粒占膜层74%(体积)时,微粒相互靠近而达到密集的充填状态。组分中的乳化剂及其他水溶性助剂留在微粒间隙的水中。

第二,融台过程。水分继续挥发,高聚物微粒表面吸附的保护层破坏. *** 的微粒相互接触,其间隙愈来愈小,至毛细管径大小时,由于毛细管作用,其毛细管压力高于聚合物微粒的抗变形力,微粒变形,最后凝集、融合成连续的涂膜。这一过程是乳液能否成膜的关键,若乳液颗粒的玻璃化温度(Tg)较高(为了使涂膜具有良好的机械性能,耐候性和耐沾污性,Tg值一般不能太低),在较低环境温度下,就很难变形,从而会使融合过程受阻,导致不能成膜,这时往往需要用成膜助剂协助成膜。

第三,扩散过程。残留在水中的助剂逐渐向涂膜扩散,并使高聚物分子长链相互扩散,形成具有良好性能的均匀涂膜。

成膜助剂是一种可以挥发的暂时性增塑剂,能促进乳胶粒了的塑性流动和弹性变形,改善其聚结性,可在广泛的施工温度范围内成膜、理想的成膜助剂应具有下列特性:作为聚合物乳液的良溶剂,可降低聚台物的更低成膜温度;在水巾溶解性小;具有-定的挥发性,成膜过程中能滞留在涂膜中发挥作用,成膜后全部挥发,不影响涂膜性能;不影响乳液的稳定性。

成膜助剂的种类很多,包括醇类(如笨甲醇)、酯醇类(如Texanol酯醇等)、醇醚类(如乙二醇丁醚、丙二醇苯醚等)、醇醚酯类(如己二醇丁醚醋酸酯等)等。常用的成膜助剂有Texanol酯醇、苯甲醇(BA)、乙二醇丁醚(EB)、丙二醇苯醚(PPH)。以下就这几种常用的成膜助剂进行比较试验。

2.1主要仪器设备更低成膜温度仪(日本理学工业公司,IV605)

2.2试验用的乳液本试验采用在国内具有代表性、使用广泛的纯丙、苯丙、醋丙、叔醋等乳液,如长兴、巴斯夫、联碳、国民淀粉、罗门哈斯、江苏口出集团、北京东方化工J一、北京通州互益化工厂、北京振翔贸易公百公司、山东青州宝达化工厂、北京科信工业贸易有限责任公可等的产品,因篇幅关系,本文仅提供部分试验数据。

2.3成膜助剂在乳液及涂料中的性能试验相容性试验:乳液与成膜助剂Texanol酯醇、苯甲醇、乙二醇丁醚、丙二醇苯醚直接混合,搅拌均匀,观察乳液的性状。

乳液粘度的测定:在相容性正常的乳液中加人成膜助剂后测定其牯度,观察粘度变化情况。

乳液摄低成膜温度的测定:将可相容的乳液与几种成膜助剂混合,测定其更低成膜温度(MFT)。

乳液冻融稳定性试验:将相容性正常的乳液加入相应量孔液更低成膜温度降至0℃的最你用量)的Texanol、BA、EB和PPH成膜助剂.于-10%的冰箱中放置16h取出后于标准条件(室温23±2℃,相对湿度50±5%)下放置8h,如此反复5个循环,观察乳液最终状态。

乳液贮存稳定性试验:将相容性正常的乳液加入相应量(乳液更低成膜温度降低至0℃的更低用量)的Texanol酯醇、苯甲醇、EB、PPH成膜助剂,在标准条件(室温23±2℃,相对湿度50±5%)下放置3个月,定期观察乳液的状态,测定其粘度、pH值。

2.4涂料的性能检测

选用不同的成膜助剂(Texanol、EB、PPH和BA),比较其对涂料性能的影响。PPH和BA不能直接加入,将其与醇类溶剂混合,在配漆过程中缓慢滴加,以防止造成絮凝;EB若在搅拌情况下缓慢加入,可不与醇类溶剂混合,但加入速度应缓慢。

依据国家标准GB/T9755—95进行性能测试(耐老化性除外),在耐擦洗性方面Texanol酯醇有比较突出的优势,很可能是因为其他成膜助剂与纯丙乳液的相容性不好,影响了乳液成膜,从而对涂料的性能造成影响。生产时应注意成膜助剂不能添加太快,以免产生絮凝而影响涂料的性能。

3结果与讨论

3.1成膜助剂与乳液的相容性

成膜助剂与乳液的相容性试验结果:BA、EB、PPH在6512苯丙乳液中相容性好,PPH在除纯丙乳液外的其他乳液中相容性好,但这几种成膜助剂都要缓慢滴加。否则也容易造成絮凝。对于纯丙乳液,加人此三种成膜助剂都会产生絮凝,有时可以将这几种成膜助剂与醇类溶剂混合后加到乳液中,以免造成破乳。Trexanol酯醇与我们收集到的任何一种乳液的相容性都很好,且添加方式简易,不容易造成破乳,对乳液具有普遍性。

3.2对乳液粘度的影响加入成膜助剂后,乳液的粘度基本上都有所增大。这是因为成膜助剂会软化乳液粒子,乳液粒子溶胀而变大,只要加量适当,不会影响乳液的使用。但是,由于乳液粒子的溶胀,其表面上起保护作用的表面活性剂及保护胶体的浓度相应降低.甚至被大量成膜助剂取代,而使乳液不稳定。

3.3对乳液MFT的影响

成膜助剂对乳液MFT的影响:对于相容性好的乳液,要达到更低成膜温度O℃时的成膜助剂的用量,对于苯丙乳液,加入苯甲醇的用量比。Texanol酯醇小,这可能是因为相似相容原理,苯甲醇能在更大程度上软化苯丙乳液粒子,使之以较少的用量就将乳液的更低成膜温度降至0℃,但其毒性较大,对其他类型的乳液相容性也较差,必须与醇类溶剂配合使用。EB可溶于水,加到乳液中后,不易与乳液粒子接触,所以其用量相应要大些,但由于其挥发速度与水相当,甚至更快,所以对成膜不利。进而影响涂层的性能。PPH对苯丙乳液的效果好些,但由于其在水中的溶解度略大,不易与乳液粒子接触。因此,对于PPH可相容的乳液,与Texan0l酯醇效果差不多,但对十纯丙乳液或其他类型的乳液,Texanol酯醇在加入方式上比其他成膜助剂简易,且用量不大。

3.4对乳液冻融稳定性的影响加入成膜助剂对乳液的冻融稳定性有一定影响。经过5次循环以后,乳液均凝聚,其原因是成膜助剂使乳液粒子溶胀,且使保护胶体浓度相应降低的缘故,所以若用成膜助剂与乳液配制成基料再使用,就要注意不能在低温下放置贮存。

3.5对乳液贮存稳定性的影响

成膜助剂对乳液的贮存稳定性没有影响(仅针对相容性好的乳液),随着时间的推延,有些乳液的pH值略微下降,这是中和乳液时所用的氨水挥发所致。

乳胶漆成膜机理:

乳胶漆涂料的成膜分为三个过程,乳胶颗粒紧密堆积,乳胶颗粒融结、聚合物链端相互扩散。

乳胶漆涂布于基底上,涂料中挥发分(主要为水分)外蒸内吸,涂料固含量不断增加,颗粒相互接近最后达到最紧密的堆积。

干燥继续进行,覆盖于乳胶颗粒表面的吸附层被破坏, *** 的聚合物颗粒表面直接接触,在聚结溶剂的溶涨溶解作用下,颗粒软化变形融结而成连续薄膜。

乳胶颗粒融结同时和之后,聚合物表面的链端分子相互渗透、扩散,涂膜进一步均匀化。

乳胶漆成膜与天气状况关系很大,高温、大风,低湿度,低温、过度潮湿等都将导致乳胶粒子成膜不良,影响涂膜性能。

有关化工设备的毕业论文

随着全球经济的发展和现代工业的日新月异,人

们对工业生产设备的自动化水平、对自动化产品的综

合功能及可靠性、对新产品的上市速度、对根据客户

和市场要求修改配方的灵活性均提出了更高的要求。

在这样的大环境下,批量(Batch)控制管理软件作为

一个十分重要的产品,在越来越多的工业控制过程

(尤其是精细化工、制药和食品行业)中得到了广泛

的应用。

本文以Invensys集团旗下的美国Foxboro公司的

I/A

Batch软件在国内某一精细化工厂的生产装置上

的应用为例,介绍了该控制管理软件的全貌及其应

用要点。

纵观Foxboro的I/ABatch发展历史,可以追溯到

1969年首个冗余批量控制器的发布。早在上世纪90

年代前,伴随着不同的DCS系统发展阶段,Foxboro

的批量控制软件也分别经历了LargeScaleBatch、Easy

Batch、Batch

Plant

Manager、R-Batch

4个不同时期。

一直到1992年,基于Unix平台并和I/A系统集成在

一起的Foxbatch才诞生,被称为核心BatchV1.0。1996

年开始,著名的工业软件公司Wonderware开始为Fox

batch编写具有更友好客户界面的批量软件。该软件基

于WindowsNT平台,可以和工厂管理软件集成在一起

使用,亦可以同时被Foxboro公司I/A系统外的其他控

制系统使用。1998年,Foxbatch正式更名为I/ABatch,

之后分别经历了Ver

6.2、Ver

7.1等,直到现在被广泛

运用于Windows

XP平台上的I/A

Batch

Ver

8.1。

I/A

Batch是一套具有很大灵活性的批量生产管理

软件,是针对生产过程中的建模和实现批量生产的自

动化控制而设计的,完全符合ISAS88.01标准,具有

模块化的特点。用I/ABatch软件,用户可以很方便地

1引言

2

I/A

Batch的发展回顾及主要特点

创建配方,用批量离线组态环境模拟新配方的运行过

程,查询到有关产品的历史数据,并得到一些产品物

料汇总信息。可以说它是一个“成品化”的批量控制

引擎,如果和I/A

DCS系统联合使用,还有参数自动

连接生成、便于组态集成等特点。

3精细化工装置的工艺流程及控制要求I/A

Batch具有十分广阔的应用范围,小到一个最

简单的加料混合过程,大到十几条批量生产线几十个

反应釜的生产过程,均可以用这套软件来组态实现。

以某精细化工装置为例,共有两条生产线并行生

产两种相关联的化工产品A和B。由于该化工产品具

有很强的季节性,在连续生产两三个月后要清洗设备,

重新更换原料(包括调整原料比),生产另两种相关

产品C和D。其中前两者的基本工艺过程是一致的。

整套装置有两个进料贮槽、两个反应釜、两个成品槽,

有模拟量输入100点、模拟量输出50点、数字量输入

200点、数字量输出250点。

从同时投入生产的两条生产线来看,在A线进入

到该线反应釜初始阶段前,必须检查B线是否已经正

常完成KOH的进料,并且反应釜内的压力、温度达

到了工艺工程师预定的值。每条生产线的每一生产步

骤中都有很严格的反应条件检测,一旦有连锁发生,

工艺会要求控制程序根据不同的连锁原因转入到不同

的子步骤中去,直到连锁条件完全解除,继续该条生

版权声明

本文仅代表作者观点,不代表本站立场。
本文系作者授权发表,未经许可,不得转载。