数据可视化工具教学评价(数据分析与可视化课程总结)
数据可视化的优点
数据可视化的优点:
1.加强商业信息传递效率
人眼通过视觉和图像比文本和数字更容易吸收和掌握信息。尽管如此,为高级管理人员编制的大多数商业智能报告通常都填充有静态表格和图表,这些表格和图表无法为查看它的人提供生动的信息。相比之下,数据可视化使用户能够接收有关运营和业务条件的大量信息。数据可视化允许决策者查看多维数据集之间的连接,并通过使用热图,地理图和其他丰富的图形表示提供解释数据的新 *** 。
2.快速访问相关业务见解
通过数据可视化,业务组织可以提高他们在需要时查找所需信息的能力,并且比其他公司更高效地完成这些工作。根据最近进行的一项研究,使用可视化数据发现工具的组织,业务经理比仅依靠托管报告和仪表板的人更及时找到信息的可能性高28%。此外,使用可视化数据发现产品的公司中, 48%的商业智能用户能够在没有IT员工帮助的情况下找到所需信息。
3.更好地理解运营和业务活动
数据可视化的一个重要优势,是它使用户能够更有效地查看在操作条件和业务性能之间发生的连接。在当今竞争激烈的商业环境中,在数据中找到这些相关性从未如此重要。例如,通过提供业务和运营动态的多角度视图,数据可视化允许高级领导团队了解,最近远程客户呼叫中心的首次联系解决率如何?从而显着影响客户满意度。
4.快速识别最新趋势
在这个时代,公司能够收集的有关客户和市场状况的数据,可以为企业领导者提供对新收入和商业机会的洞察力–他们可以从大量的数据中发现机会。使用数据可视化,决策者能够更快地掌握跨多个数据集的客户行为和市场条件的变化。
5.准确的客户情感分析
利用数据可视化,公司可以更深入地了解客户情绪和其他数据,从而揭示他们向客户推出新服务的新机遇。这些有用的见解使企业能够采取新的商机,以保持领先于竞争对手。
扩展资料:
数据可视化技术包含以下几个基本概念:
①数据空间:是由n维属性和m个元素组成的数据集所构成的多维信息空间;
②数据开发:是指利用一定的算法和工具对数据进行定量的推演和计算;
③数据分析:指对多维数据进行切片、块、旋转等动作剖析数据,从而能多角度多侧面观察数据;
④数据可视化:是指将大型数据集中的数据以图形图像形式表示,并利用数据分析和开发工具发现其中未知信息的处理过程。
数据可视化已经提出了许多 *** ,这些 *** 根据其可视化的原理不同可以划分为基于几何的技术、面向像素技术、基于图标的技术、基于层次的技术、基于图像的技术和分布式技术等等。
参考资料:百度百科-数据可视化(数据视觉表现形式的科技研究)
如何看待数据可视化?
现如今,数据可视化是一个备受关注的事物,很多人在自己的工作中都会使用到数据可视化这一工具去展示数据,数据可视化在各个领域中都有重要的应用,由此可见数据可视化是一个十分重要的技术。那么我们应该如何看待数据可视化这个技术呢?下面我们就给大家介绍一下数据可视化的相关知识。
其实我们可以这样认为,数据可视化降低了数据分析的门槛,这是由于数据可视化让理解数据变得十分简单,观众不是统计学专家,不懂各种复杂的数学公式,也一样可以快速的从图中发现一些问题,探察到潜在的商业价值,从而帮助制定更好的商业决策。同时,数据可视化工具也降低了观众的学习成本,观众并不需要了解那些专业的统计学工具、建模工具如何使用,也不需要回任何编程语言,只需要将数据连接上,通过托拉拽等方式,就可以很容易地理解数据包含的意思。
从上面的内容我们不难发现数据可视化是大数据中重要的一环,其实由于这几年随着互联网的发展越发的快速了起来,曾有统计显示,全球数据量正以平均年增长率50%的速度在增长着,而当前数据总量的80%都是最近两年产生的。由此可见,现在正是数据的时代。而面对如此庞大的数据量,如何利用是一个关键。大数据可以做很多事,我们在使用数据可视化的时候需要有一个明确的目标,这个目标具体就是让数据能被更好地理解,并且与其他工具一样使企业能够把握不断增长的数据流。当然还必须促进数据发现,从而帮助人们进行更好地决策。
大家都知道,任何事物都是有两面性的,大数据也不例外,如果我们用好了大数据就能够造福用户,如自动驾驶、阿尔法狗都是人类智慧、机器智能和大数据的结晶。但是如果用不好,那就是对资源的浪费和对个人隐私的侵犯,所以我们可以引用一句名言,那就是狄更斯说的:这是更好的时代,也是最坏的时代;这是智慧的年代,也是愚蠢的年代;这是信仰的时期,也是怀疑的时期;这是光明的季节,也是黑暗的季节;这是希望的春天,也是失望的冬天;大伙儿面前应有尽有,大伙儿面前一无所有。所以说,我们在使用大数据的时候还是需要掌控其方向,这样才能够促进人类社会的发展。
那么数据可视化和报表有什么需要我们注意的呢?其实对于数据可视化这个词以及数据可视化工具与报表和传统的报表工具如Excel、PPT的区别是需要大家了解的,其实这二者有很多相似之处,而且很多数据可视化的展示就是静态报表。然而数据可视化很重要的一点在于其交互性,通过动态的方式来展示,相较于静态的报表涵盖的信息量更大。
在这篇文章中我们给大家介绍了很多关于数据可视化的相关知识,通过这些知识我们不难发现数据可视化是一个十分实用的工具,因此我们很有必要去掌控数据可视化这一门工具技能,让数据可视化为我们做出更大的贡献。
数据可视化实训总结
数据可视化实训总结
总结是对某一阶段的工作、学习或思想中的经验或情况进行分析研究的书面材料,它能使我们及时找出错误并改正,让我们一起认真地写一份总结吧。总结怎么写才不会千篇一律呢?下面是我精心整理的数据可视化实训总结,仅供参考,希望能够帮助到大家。
数据可视化实训总结1
数据可视化是指将数据间的关系利用图表直观地展示出来。通过数据可视化将大量的数据集构成数据图像,同时将数据的各个属性值以多维数据的形式表示,可从不同的维度观察数据,从而对数据进行更深入的观察和分析。
一、数据分析可视化常用的图表类型有如下几种:
1、表格
2、散点图
3、折线图
4、柱状图
5、条形图
二、可视化分析
2.1想分析购买数量前10名的用户是否是回头客还是客单量大?
对该项分析使用 表格 分析,按购买数量排名前10的用户根据购买日期的次数分析:都是一次性购买,并非回头客用户,企业应该想办法维护这些大客户群。
2.2 根据2.1分析结果继而想到那些回头客购买力度怎么样呢?从而再次对后买日期统计,分析购买次数多的用户:得出本次共分析29944个用户,回头客只有25个,占比0.083%;其中只有1名用户是购买4次的, 其余24名用户只购买2次。商家需要拉些回头客,考虑是否质量过关,是否活动力度不够?
使用一个饼状图更直接看出回头客比重之小
2.3 根据商品种类cat_id统计出销量前10名的商品种类,使用条形图做了可视化分析:
2.4 对20xx年和20xx年总销量分别按照月度和按照季度做 折线图 可视化分析,很明了看出销售变化趋势如下;11月度销量更高,第四季度销量更高。
2.5 分析表2数据,想知道哪个年龄段的儿童服装销量比较高?如下分别用 柱形图 和 散点图 进行可视化图表分析(感觉点状图效果稍好一些),可以看出相同年龄段的男女生销量走势是一致的,且随着年龄增长销量呈下降趋势。
若以3岁为一个阶段,0—3岁为婴儿期间的销量更高, *** 和天猫市场需求量大。
三、作为数据分析职责的思想总结
在此总结下两篇初步学习数据分析的心得:数据分析首先要掌握常用的数据分析 *** ,数据分析工具,然后再根据自己公司的产品调整,灵活组合。接下来我要系统学习数据分析知识。数据分析师是一个实践的职位,要在实际项目中不断的训练,才能成为高手。
作为数据分析师我认为的主要职责是要将业务数据清晰、准确、明了的呈现给数据使用者和决策者,比如预测用户的流失,对用户进行自动分类等。你能提供的价值大了。决策者和管理者能够根据呈现的数据结果及时合理调整业务活动,以使企业得到利润更大化。
数据可视化实训总结2
一、数据可视化的定义
数据可视化(Data Visualization)是涉及信息技术、自然科学、统计分析、图形学、交互、地理信息等多种学科交叉领域,通过将非数字的信息进行可视化以表现抽象或复杂的概念和信息的技术。简单的说,这种技术将数据以图表的方式呈现,用以传递信息。人类有五官,能通过5种渠道感受这个物质世界,那么为什么单单要青睐可视化的方式来传递信息呢?这是因为人类利用视觉获取的信息量巨大,人眼结合大脑构成了一台高带宽巨量视觉信号输入的并行处理器,具有超强模式识别能力,有超过50%功能用于视觉感知相关处理的大脑,大量视觉信息在潜意识阶段就被处理完成,人类对图像的处理速度比文本快6万倍,所以数据可视化是一种高带宽的信息交流方式。
如果我们的视野再开阔些,数据可视化从广义上来说包含了三个分支:科学可视化(Scientific Visualization),信息可视化(Information Visualization)和可视分析学(Visual Analytics)。科学可视化是跨学科研究与应用领域,关注三维现象的可视化,在建筑学、气象学、医学或生物学方面的各种系统中有广泛的应用,这个领域研究的数据具有天然几何结构(如磁感线、流体分布等)。
scientific_data_viz。png
信息可视化则研究抽象数据的交互式视觉表示以加强人类认知。抽象数据包括数字和非数字数据,如地理信息与文本,这个领域研究的数据具有抽象的结构,比如柱状图,趋势图,流程图和树状图,这些图表将抽象的概念转化成为可视化信息,常常以数据面板的形式体现。
info_data_viz。png
可视分析学结合了交互式视觉表示以及基础分析过程(统计过程、数据挖掘技术),执行高级别、复杂的活动(推理、决策)。
viz_ *** ysis。png
二、在数据科学全过程中的位置
数据科学的主要组成部分包含三个大的阶段:数据整理,探索性数据分析和数据可视化。站在一个更高的位置来看,数据可视化在数据科学中的位置是比较靠后的,是属于最后的成果展示阶段。如果要从头说起的话,首先,在数据整理阶段,我们的主要任务是数据的获取和解析,包括一系列对原始数据的清洗和加工工作,这一块的知识领域主要涉及计算机科学。紧接着是探索性数据分析阶段,这个阶段要大量使用统计和数据挖掘方面的专业知识,也需要绘制图表来解释数据和探索数据,这个阶段的主要任务是过滤和挖掘。但这个阶段的可视化分析只是你和数据之间的“对话”,是数据想要告诉你什么,而数据可视化则是数据和你的读者之间的对话,是你通过数据想要告诉读者什么,这是它们之间更大的区别。完成了上面两个阶段的内容,才到了我们最后的数据可视化阶段,这是一个多学科交叉的领域,涉及到图形设计,信息可视化和人机交互,我们的主要任务是对信息进行精炼,然后通过可视化表示出来,并与读者产生交互。然而,如果将数据科学的这三个阶段理解为按严格顺序进行的“线性”的模型那就大错特错了,它经历的是一个迭代的,非线性的过程。后面的步骤会让你更了解之前所做的工作,可能到了数据可视化阶段,才意识到还有太多疑点要弄明白,我们需要回到上一步重新进行之前的工作,就像画家翻来覆去才能最终完成一幅杰作一样,数据可视化的过程并不是给数据分析这个刚出炉的蛋糕加点糖霜,,而是有一个反复迭代,不断优化的过程。
三、数据可视化的技术栈
数据可视化是一个再典型不过的多学科交叉领域了,可以说数据可视化所需要用到的知识,就是数据科学庞大知识体系的一个剪影。你会感受到数据科学理性的.一面,同样也会感受到她感性的一面。你可以穷尽自己的一生,在这个浩如烟海的领域中尽情的探索,常学常新,其乐无穷。
四、数据可视化过程
数据可视化的本质,是充分理解业务的基础上对数据进行深入分析和挖掘,然后将探索数据所得到的信息和知识以可视化的形式展现出来。也就是说我们做的工作其实就是从数据空间映射到图形空间。我们要做的之一步工作是充分的结合业务理解数据,然后采用某些 *** 选择合适的图表类型,这又要求我们先对图表类型有个比较全面的了解。绘制完图表是不是就完成了呢?其实不是。我们还要对图表进行优化,优化所针对的对象是各种图表元素,对此我们有一系列的设计技巧,下面将一步一步的来介绍这些知识。
4.1 结合业务理解数据
离开对业务的理解谈数据分析都是耍流氓。这里介绍一种快速了解数据与业务以开展进一步的探索与分析的 *** ,叫“5W2H法”。
步骤一:WHAT,这是关于什么业务的什么事?数据所描述的业务主题是什么?
步骤二:HOW,即如何采集的数据?采集规则会影响后续分析,比如如果是后端数据埋点,那么数据一般是实时的;而如果是前端数据埋点,那么就要进一步弄清楚数据在什么 *** 状态会上传?无 *** 状态下是如何处理的?这些都会影响最后数据的质量进而影响分析质量。
步骤三:WHY,为什么搜集此数据?我们想从数据中了解什么?数据分析的目标是什么?
步骤四:WHEN,是何时段内的业务数据?
步骤五:WHERE,是何地域范围内的业务数据?
步骤六:WHO,谁搜集了数据(Who)?在企业内可能更关注是来自哪个业务系统。
步骤七:HOW MUCH,各种数据有多大的量,足够支持分析吗?数据充足和不足的情况下,分析 *** 是有所不同的。如果七个问题中有一个答复不能令人满意,则表示这方面有改进余地。
4.2 选择图表类型
用简单的三个步骤就可以选择合适的图表类型:一看数据类型,二看数据维度,三看要表达的内容。
我们有两种数据类型,每种数据类型又有两个子类别。首先,我们有分类数据和定量数据。分类数据用来表示类别,比如苹果,香蕉,梨子和葡萄,就是水果的4种类别,称为分类定类;有的分类变量是有一定顺序的,比如可以把红酒的品质分为低,中,高三档,人的身材有偏瘦,正常和肥胖等等,这种特殊的分类变量称为分类定序。定量数据也可以进一步分为两类,一类叫连续值数据,比如人的年龄;一类叫离散值数据,比如猫咪的数量。
在数据分析时具体运用到哪些教学评价工具
1、WEKA
WEKA 原生的非 Java 版本主要是为了分析农业领域数据而开发的。该工具基于 Java
版本,是非常复杂的,并且应用在许多不同的应用中,包括数据分析以及预测建模的可视化和算法。与 RapidMiner 相比优势在于,它在 GNU
通用公共许可证下是免费的,因为用户可以按照自己的喜好选择自定义。
WEKA 支持多种标准数据挖掘任务,包括数据预处理、收集、分类、回归分析、可视化和特征选取。添加序列建模后,WEKA 将会变得更强大,但目前不包括在内。
2、RapidMiner
该工具是用 Java 语言编写的,通过基于模板的框架提供先进的分析技术。该款工具更大的好处就是,用户无需写任何代码。它是作为一个服务提供,而不是一款本地软件。值得一提的是,该工具在数据挖掘工具榜上位列榜首。
另外,除了数据挖掘,RapidMiner 还提供如数据预处理和可视化、预测分析和统计建模、评估和部署等功能。更厉害的是它还提供来自 WEKA(一种智能分析环境)和 R 脚本的学习方案、模型和算法。
RapidMiner 分布在 AGPL 开源许可下,可以从 SourceForge 上下载。SourceForge 是一个开发者进行开发管理的集中式场所,大量开源项目在此落户,其中就包括 *** 使用的 MediaWiki。
3、NLTK
当涉及到语言处理任务,没有什么可以打败 NLTK。NLTK 提供了一个语言处理工具,包括数据挖掘、机器学习、数据抓取、情感分析等各种语言处理任务。
而您需要做的只是安装 NLTK,然后将一个包拖拽到您最喜爱的任务中,您就可以去做其他事了。因为它是用 Python 语言编写的,你可以在上面建立应用,还可以自定义它的小任务。
4、Orange
Python 之所以受欢迎,是因为它简单易学并且功能强大。如果你是一个 Python 开发者,当涉及到需要找一个工作用的工具时,那么没有比 Orange 更合适的了。它是一个基于 Python 语言,功能强大的开源工具,并且对初学者和专家级的大神均适用。
此外,你肯定会爱上这个工具的可视化编程和 Python 脚本。它不仅有机器学习的组件,还附加有生物信息和文本挖掘,可以说是充满了数据分析的各种功能。
5、KNIME
数据处理主要有三个部分:提取、转换和加载。 而这三者 KNIME 都可以做到。 KNIME
为您提供了一个图形化的用户界面,以便对数据节点进行处理。它是一个开源的数据分析、报告和综合平台,同时还通过其模块化数据的流水型概念,集成了各种机
器学习的组件和数据挖掘,并引起了商业智能和财务数据分析的注意。
KNIME 是基于 Eclipse,用 Java 编写的,并且易于扩展和补充插件。其附加功能可随时添加,并且其大量的数据集成模块已包含在核心版本中。
6、R-Programming
如果我告诉你R项目,一个 GNU 项目,是由 R(R-programming简称,以下统称R)自身编写的,你会怎么想?它主要是由 C
语言和 FORTRAN 语言编写的,并且很多模块都是由 R 编写的,这是一款针对编程语言和软件环境进行统计计算和制图的免费软件。
R语言被广泛应用于数据挖掘,以及开发统计软件和数据分析中。近年来,易用性和可扩展性也大大提高了 R 的知名度。除了数据,它还提供统计和制图技术,包括线性和非线性建模,经典的统计测试,时间序列分析、分类、收集等等。
版权声明
本文仅代表作者观点,不代表本站立场。
本文系作者授权发表,未经许可,不得转载。