首页 黑客接单正文

化工过程热力学分析的基本 *** (分析热力过程的步骤和 *** )

什么是热分析法

热分析(thermal

*** ysis,TA)是指用热力学参数或物理参数随温度变化的关系进行分析的 *** 。国际热分析协会(International

Confederation

for

Thermal

Analysis,ICTA)于1977年将热分析定义为:“热分析是测量在程序控制温度下,物质的物理性质与温度依赖关系的一类技术。”根据测定的物理参数又分为多种 *** 。

***

最常用的热分析 *** 有:差(示)热分析(DTA)、热重量法(TG)、导数热重量法(DTG)、差示扫描量热法[1]

(DSC)、热机械分析(TMA)和动态热机械分析(DMA)。此外还有:逸气检测(EGD)、逸气分析(EGA)、

扭辫热分析(TBA)、射气热分析、热微粒分析、热膨胀法、热发声法、热光学法、热电学法、热磁学法、温度滴定法、直接注入热焓法等。测定尺寸或体积、声学、光学、电学和磁学特性的有热膨胀法、热发声法、热传声法、热光学法、热电学法和热磁学法等。

应用

热分析技术能快速准确地测定物质的晶型转变、熔融、升华、吸附、脱水、分解等变化,对无机、有机及高分子材料的物理及化学性能方面,是重要的测试手段。热分析技术在物理、化学、化工、冶金、地质、建材、燃料、轻纺、食品、生物等领域得到广泛应用。

化工过程热力学分析 *** 有哪几种

热力学是物理学的一个组成部分,它是在蒸汽机发展的推动下,于19世纪中叶开始形成的。最初只涉及热能与机械能之间的转换,之后逐渐扩展到研究与热现象有关的各种状态变化和能量转换的规律。在热力学的基本定律中,热力学之一定律表述能量守恒关系,热力学第二定律从能量转换的特点论证过程进行的方向。这两个定律具有普遍性,在化学、生物学、机械工程、化学工程等领域得到了广泛的应用。热力学基本定律应用于化学领域,形成了化学热力学,其主要内容有热化学、相平衡和化学平衡的理论;热力学基本定律应用于热能动力装置,如蒸汽动力装置、内燃机、燃气轮机、冷冻机等,形成了工程热力学,其主要内容是研究工质的基本热力学性质以及各种装置的工作过程,探讨提高能量转换效率的途径。化工热力学是以化学热力学和工程热力学为基础,在化学工业的发展中逐步形成的。化工生产的发展,出现了蒸馏、吸收、萃取、结晶、蒸发、干燥等许多单元操作,以及各种不同类型的化学反应过程,生产的规模也愈来愈大,由此提出了一系列的研究课题。例如在传质分离设备的设计中,要求提供多组分系统的温度、压力和各相组成间的相互关系的数学模型。一般化学热力学很少涉及多组分系统,它不仅需要热力学,还需要应用一些统计力学和经验 *** 。在能量的有效利用方面,化工生产所涉及的工作介质比工程热力学研究的工作介质(空气、蒸汽、燃料气等)要复杂得多,且能量的消耗常在生产费用中占有很高比例,因此更需要研究能量的合理利用和低温位能量的利用,并建立适合于化工过程的热力学分析 *** 。1939年,美国麻省理工学院教授H.C.韦伯写出了《化学工程师用热力学》一书。1944年,美国耶鲁大学教授 B.F.道奇写出了名为《化工热力学》的教科书。这样,化工热力学就逐步形成为一门学科。随着化学工业规模的扩大,新过程的开发,以及大型电子计算机的应用,化工热力学的研究有了较大的发展。世界各国化工热力学专家在1977年举行了首届流体性质和相平衡的国际会议,1980和1983年分别举行了第二届和第三届会议,还出版了期刊《流体相平衡》。化工热力学已列为大学化学工程专业的必修课程。

化学分析都有哪些手段?

化学分析 *** 是以物质的化学反应为基础的分析 *** 。产生于近代化学初期,比较成熟,又称经典分析法,是分析化学的重要基础。主要有重量分析法和滴定分析法。与仪器分析 *** 相比,它们不需要特殊的仪器, *** 比较简单,对常量组分(1%)分析有较高的准确度和精密度,测定的相对误差约0.2%。因此,在生产实践和科学实验中具有很大的实用价值,得到了广泛的应用。但由于灵敏度较低、耗时较多、分析精度受操作人员熟练程度的影响较大等弱点,因此越来越多的被仪器分析 *** 所替代。

经典分析法

然而认为化学分析 *** 已失去价值的观点也是片面的,其原因是①对常量组分而言,仪器分析 *** 的准确度一般不如化学分析法。②通常仪器分析 *** 是相对 *** ,即需要已知浓度的标准物质作为参比,而标准物质的分析往往是由化学分析 *** 完成的。③许多仪器价格昂贵,从分析成本考虑不宜采用。因此应该根据被测物质的性质、含量,试样的组成和对分析结果准确度的要求以及其它具体情况选用最适当的分析 *** 。

化工热力学?

化工热力学是国内外化学工程与工艺专业最重要的必修课之一,是化工过程研究、开发和设计的理论基础,是化学工程的精髓。化工热力学最根本任务就是利用热力学之一、第二定律给出物质和能量的更大利用极限,有效地降低生产能耗,减少污染,从而从本质上指导如何减缓熵增的速度。因此毫不夸张地说:化工热力学就是直接为节能减排而生的!所以,学好化工热力学可以帮助我们培养正确的“节能减排”意识,从科学的层面节能减排,以减缓有效资源和有效能量的耗散速度。同时,化工热力学也是一门训练逻辑思维和演绎能力的课程。演绎法是化工热力学理论体系的基本科学 *** ,它主要以数学 *** 进行,这决定了化工热力学的数学公式纷繁复杂,理论概念严谨、抽象。但演绎法,“似至晦,实至明;似至繁,实至简;似至难,实至易”的特点又决定了化工热力学抽象复杂的背后是多快好省,是一门非常“聪明”的学科。

《化工热力学》课程特点

《化工热力学》课程由我国化工教育的一代宗师时钧院士亲手建立并授课,至今已有三十多年的教学历史。在时先生的引领下,兄弟院校纷纷设立此课程。在他直接教导下,本校该专业培养了多名有较高国际知名度的教授,有多达二十多位教授参与教学。高起点科研成果反哺教学,奠定了研究型教学的坚实基础。

主要内容编辑

应用热力学基本定律研究化工过程中能量的有效利用(见过程热力学分析)、各种热力学过程、相平衡和化学平衡,还研究与上述内容有关的基础数据,如物质的p-V-T关系和热化学数据。

对于与环境间既有能量传递又有物质传递的敞开系统,在计算物料进出系统前后物料的内能所发生的变化时,除了考虑热和功外,还须计入相应的动能和位能的变化,以及能量在系统中的积累。对于化工生产上经常遇到的定态流动过程(单位时间内出入系统的物料量相同,且不随时间而变化,系统中没有物质或能量的积累),之一定律可表达为:

ΔU+ΔEK+ΔEP=Q-W

或ΔH+ΔEK+ΔEP=Q-WS

式中ΔU、ΔEK和ΔEP分别为物料进出系统前后内能、动能和位能的变化;H为焓,H=U+pV,等于内能加上压力和体积的乘积;WS为轴功,指膨胀功以外的功,主要是与动力装置有关的功。

热力学第二定律的应用用以研究:①相平衡,在相平衡准则的基础上建立数学模型,将平衡时的温度、压力和各相组成关联起来,应用于传质分离过程的计算;②化学平衡,在化学平衡准则的基础上研究各种工艺条件(温度、压力、配料比等)对平衡转化率的影响,应用于反应过程的工艺计算,选择更佳工艺条件;③能量的有效利用,功可以完全转变为热,热转变为功则受到一定的限制,为了节约能量,在可能条件下功的消耗越少越好。对化工过程所用的热能动力装置、传质设备和反应器等,都应该进行过程的热力学分析,从而采取措施以节约能耗,提高经济效益。

热力学第二定律的建立是从研究蒸汽机效率开始的。研究表明:在高温T1与低温T2两个热源间工作的任何热机(将热转变为功的机器,如蒸汽机)的热机效率η(从高温热源吸收的热中转变为功的分率),以工作过程为可逆过程(见热力学过程)的热机(即可逆热机)的效率ηr为更高,且ηr=(T1-T2)/T1。这种可逆热机的工作过程称为卡诺循环。这个规律称为卡诺定理,它是有效利用能量的依据。

上面的卡诺定理可以由此式导出。由于可逆过程是在平衡条件下进行的,因而热力学第二定律提供了一个判断是否达到平衡的普遍准则。应用于相变化和化学变化时,可导出更具体的相平衡准则和化学平衡准则。

化工热力学

研究的三个主要内容方式1.过程进行的可行性分析和能量的有效利用。2.平衡问题,最长研究的就是相平衡问题。3.平衡状态下的热力学性质计算。所以也就是B不是我们化工热力学中所研究的,反应速率主要是物化和反应工程研究的。

化工热力学的现状和发展方向

在基础数据方面,目前已积累大量的热化学数据、p-V-T关系数据以及相平衡和化学平衡的数据,编制成许多精确的普遍化计算图表(如普遍化压缩因子图,已发展出几百种状态方程,少数状态方程还能兼用于气液两相。在活度系数方程和状态方程的基础上,进行相平衡关联方面,取得较显著的进展,对于许多常见系统,已经能用二元系的实验数据预测多元系的汽液平衡和气液平衡。已有几种基团贡献法,可用基团参数估算许多系统的汽液平衡和液液平衡。这种 *** 对新过程开发有很大的作用。复杂系统化学平衡的计算也有明显进展。化工过程的热力学分析 *** 已初步形成。在近期的研究工作中,除了继续进行基础数据的测定外,建立具有可靠理论基础的状态方程是相当活跃的领域,要求方程适用于极性物质、含氢键物质和高分子化合物,并能同时用于气相、液相和临界区域。非常见物质的汽液平衡、液液平衡和液固平衡,以及与超临界流体萃取新技术有关的气液平衡和气固平衡,与气体吸收、湿法冶金和海洋能源开发有关的电解质溶液的研究,吸引了许多人的兴趣。化工热力学在生物化学工程中的应用也令人注目。还须指出,由于非平衡态热力学理论的发展,开始打破经典热力学不涉及过程速率的局限性。由于节约能源的重要性,化工过程的热力学分析的研究也正方兴未艾。

版权声明

本文仅代表作者观点,不代表本站立场。
本文系作者授权发表,未经许可,不得转载。