首页 安全防御正文

反相乳液聚合物专利文献(反相微乳液聚合法)

乳液聚合的物系组成及其作用.乳液聚合生产 *** 有哪些特点

一般的高分子物理和高分子化学的教材上都有,自由基聚合反应在高分子合成工业中是应用最广泛的化学反应,大多烯类单体的聚合或共聚都采用自由基聚合,所得聚合物都是线型高分子化合物。 按反应体系的物理状态自由基聚合的实施 *** 有本体聚合、溶液聚合、悬浮聚合、乳液聚合四种 *** 。 ⒈ 本体聚合 本体聚合是不加任何其他介质,只有单体在引发剂、热、光、辐射等引发下进行的聚合。有时还须加入少量色料、增塑剂、润滑剂、分子量调节剂等助剂。因此本体聚合主要特点是产物纯净,工艺过程、设备简单,适于制备透明和电性能好的板材、型材等制品。不足之处是反应体系粘度大,自动加速显著,聚合反应热不易导出,温度不易控制,易局部过热,引起分子量分布不均。 气态、液态、固态单体均可进行本体聚合,液态单体的本体聚合最重要。⒉ 溶液聚合 单体和引发剂溶于适当溶剂中进行的聚合 *** 称作溶液聚合法。溶液聚合反应生成的聚合物溶解在所用的溶剂中为均相聚合,如聚合物不溶于所用溶剂中而沉淀析出,则为非均相聚合又称沉淀聚合。 溶液聚合过程中使用溶剂,使体系粘度降低,因此混合和传热较易,温度容易控制,较少凝胶效应,可以避免局部过热。 ⒊ 悬浮聚合 溶有引发剂的单体以液滴状悬浮于水中进行自由基聚合的 *** 称为悬浮聚合法。整体看水为连续相,单体为分散相。聚合在每个小液滴内进行,反应机理与本体聚合相同,可看作小珠本体聚合。同样也可根据聚合物在单体中的溶解性有均相、非均相聚合之分。如是将水溶性单体的水溶液作为分散相悬浮于油类连续相中,在引发剂的作用下进行聚合的 *** ,称为反相悬浮聚合法。 悬浮聚合体系一般有单体、引发剂、水,分散剂四个基本组分组成。不溶于水的单体在强力搅拌作用下,被粉碎分散成小液滴,它是不稳定的,随着反应的进行,分散的液滴又可能凝结成块,为防止粘结,体系中必须加入分散剂。 悬浮聚合产物的颗粒粒径一般在0.05~0.2mm。其形状、大小随搅拌强度和分散剂的性质而定。 悬浮聚合法因以水为介质,体系粘度低,传热好,温度易控制。产品分子量及其分布比较稳定。产物是固体微粒,后处理简单,只需经离心、干燥即可,因此成本较低。但也存在自动加速效应,使聚合速度不易控制;产品中的分散剂不能彻底清除,影响产品纯度。 ⒋ 乳液聚合 乳液聚合是可用于某些自由基聚合反应的一种独特的 *** ,它涉及以乳液形式进行的单体的聚合反应。它是指单体在乳化剂和机械搅拌作用下,在分散介质中分散成乳状液而进行的聚合反应。乳液聚合体系的组成比较复杂,一般是由单体、分散介质、引发剂、乳化剂四组分组成。经典乳液聚合的单体是油溶性,分散介质通常是水,选用水溶性引发剂。当选用油溶性单体时,则分散介质为有机溶剂,引发剂是油溶性的,这样的乳液体系称为反相乳液聚合。

絮凝剂的生产工艺

(1)絮凝剂生产工艺一 水解法。

共聚法相比,一般水解法制备的产物水溶性去屑因子(HD)不高,低于30%,理论上HD大于70%的产物应通过共聚法制取,该法对水解温度和事件有一定要求,同时水解过程中易发生大分子降解。天津大学的冀兰英等人采用水解剂NaOH、Na2CO3对水解法进行研究,发现NaOH不但有加速水解的作用,还有加深水解的作用。如果要值得低水解度(10%)的胶乳可用NaOH为水解剂,要制中水解度(大于10%)的胶乳,更好用NaOH和Na2CO3共水解,从而可在较短时间内达到较高水解值。近些年,高相对分子质量特别是超高相对分子质量丙烯酸、丙烯酰胺聚合物在三次采油方面具有无可争议的作用。与水解法相比,共聚法制得的AA/AM共聚物一般相对分子质量不高,水溶性不好,故而超高相对分子质量AA/AM共聚物多用水解法制备。季鸿渐、孙占维等人建立了丙烯酰胺水溶液聚合的潜在型引发体系,研究了在碳酸盐法聚合体系,添加不同量氨、尿素、EDTA-2Na,以及聚合体系PH值、单体浓度、聚合水浴温度对聚合产物相对分子质量及其溶解性能的影响规律和原因,解决了产物高相对分子质量与产生不溶聚合物之间的矛盾。李小伏、李绵贵采用非均相水解与反向悬浮相结合的 *** 合成了相对分子质量大于1×10的阴离子聚丙烯酰胺,研究了水解度与水解时间及体系PH值得关系、不同水醇比条件下水解度与时间的关系、水解度与温度的关系,获得了超高相对分子质量速溶型聚丙烯酰胺的反应条件。

(2)絮凝剂生产工艺二: 水溶液聚合反应

(3)絮凝剂生产工艺三: 反相乳液聚合

反相乳液聚合及反相悬浮聚合之前都需要制备反相胶体分散体系,即将单体水溶液借助搅拌分散或乳化剂的油相中,形成水/油(W/0)非均相分散体系,然后加入引发剂进行游离基聚合。1、水解法: 阴离子型絮凝剂(聚丙烯酰胺)质量指标: 阴离子聚丙烯酰胺指标名称 指标 固含量% ≥90 分子量M 800-1800 残单含量% ≤0.2 水不溶物% ≤0.2 PH值 7-8 水溶时间h 1-2

反相乳液聚合的三个阶段

乳液在我们生活中并不陌生,但是到底怎么样,我们从化学角度来了解一下。

乳液(what?)

反相乳液聚合(what?how?good point?)

乳液,看起来纯白如牛奶。除了用于化妆品外,还应用于化工、建筑等生产行业当中,通常称为工业乳液。

乳液状态

请点击输入图片描述

其实,乳液就是一种液体分散在另一种与之不相溶的液体中的分散体系,通常会经历一系列不稳定的过程,如分层、絮凝、聚结和奥氏熟化等,并最终破乳。按连续相的种类可分为水包油型和油包水型。

两种形态

请点击输入图片描述

反相乳液聚合是早在1962年首次由Vanderhoff报道这一概念。反相乳液聚合是乳液聚合反应的一个分支,指的是将单体水溶液通过乳化剂的分散于油相介质中,使用引发剂引发聚合的 *** 。

The use of high‐energy irradiation in an investigation of the mechani *** and kinetics of emulsion polymerizationxueshu.baidu.com/usercenter/paper/show?paperid=d97ce860257fb94a2ae9d4d5a7a75de7site=xueshu_se

那么他的具体过程到底是怎么样?

配制油相:在装有温度计、搅拌棒、四口烧瓶里加入的白油、乳化剂,在温度为40℃,转速为300r/min搅拌,使乳化剂充分溶解;

配置水相:用蒸馏水溶解一定量的AA、AMPS单体,并用NaOH调节值至7。然后再加入单体AM,同时加入引发剂;

将水相溶液滴加到油相中,在常温下高速搅拌乳化得到均一稳定的白色乳液;

在350r/min搅拌速度下,将白色乳液通氮气除氧,将其放入一定温度的水浴中,继续通氮气,恒温反应4小时,得到聚合物乳液。

反应装置图

请点击输入图片描述

优点:聚合反应速率快,产物分子量高且分子量分布窄;聚合热易扩散,反应温度易控制;聚合体系粘度低,适于制备高粘性聚合物等。

乳液聚合物在正电性钻井液体系中的应用

钱晓琳 苏长明 于培志 王琳

(中国石化石油勘探开发研究院,北京100083)

摘要 采用反相微乳液聚合 *** 合成了乳液聚合物,进行了室内性能评价、中试放大试验与现场试验。结果表明,乳液聚合物易溶于水,可直接加入正电性钻井液中使用,能有效地缩短现场水化及配浆时间;乳液聚合物作为钻井液添加剂,具有良好的增黏、提切和降失水性能,当乳液聚合物加量0.4%时,即可达到钻井液性能的基本要求;生产路线可靠,产品性能稳定,可扩大生产;将乳液聚合物用于正电性钻井液中,在大古1井的现场试验中取得了理想的应用效果。

关键词 微乳液聚合 乳液聚合物 合成 正电性钻井液

Application of Emulsion Polymer in Positive Electricity Drilling Fluid

QIAN Xiao-lin,SU Chang-ming,YU Pei-zhi,WANG Lin

(Exploration & Production Research lnstitute,SlNOPEC,Beijing100083)

Abstract An emulsion polymer is synthesized by microemulsion polymerization.Laboratory performance evaluation and pilot synthesis and field application of emulsion polymer are studied.The results show that emulsion polymer can be solved easily in water,so it can be added directly in drilling fluid and can effectively shorten drilling fluid preparing time.The emulsion polymer as a drilling fluid additive has good performances of raising viscosity and strengthening shearing force and reducing filtration.When the concentration of emulsion polymer is0.4%,it can meet the basic requirements of drilling fluid performance.A favorable field application effect in well Dadu-1 has been achieved.

Key words microemulsion polymerization emulsion polymer synthesize positive electricity drilling fluid

目前,我国油田用聚丙烯酰胺的产品形式基本为粉剂,现场应用时需要大型的溶解装置。而且聚丙烯酰胺生产工艺均为20世纪90年代引入我国的大块绝热釜式溶液聚合,聚合溶液质量分数低,产物的相对分子质量较小,在制成干粉过程中,高温烘干和剪切作用又容易使高分子链降解和交联,使粉剂产品的溶解性、絮凝性等变差。

乳液聚合也是工业上广泛使用的聚合 *** ,乳液聚合产物的分子量比溶液聚合物的产物高;聚合产物以胶乳形式生成,若产物直接以胶乳形式使用,操作更加容易;乳液聚合还具备其他一些优点,如聚合热容易传递、聚合速率高和产物分子量易控等。由于这些独特的优点,乳液聚合技术的开发受到很多研究人员的重视。自从20世纪80年代法国科学家Candau[1]首次采用反相微乳液聚合法得到稳定、相对分子质量高、分布窄的聚丙烯酰胺反相微乳胶以来,国内外学者对丙烯酰胺的反相微乳液聚合做了大量研究[2~4]。目前,只有Cytec公司取得了聚丙烯酰胺反相微乳液聚合 *** 的专利权,国内研究大都处于实验室阶段,离工业化生产的差距较大。本文采用反相微乳液聚合 *** 合成了可直接作为钻井液添加剂使用的聚丙烯酰胺胶乳产品,探讨了室内合成 *** 、乳液聚合物性能以及中试放大试验,并将以其为主剂配制出的正电性钻井液,在新疆大涝坝2号构造的大古1井进行了现场试验。

1 乳液聚合物的合成

主要原料:丙烯酰胺、丙烯酸、氢氧化钾、非离子表面活性剂、去离子水、白油均为工业级,引发剂、乙醇、庚烷均为分析纯试剂,高纯氮,转相剂。

合成过程:在装有恒压加料器、搅拌器、温度计和通气排气管(250mL)的4口烧瓶中,加入乳化剂和白油,加热溶解,同时在加料器内加入丙烯酰胺、丙烯酸钾溶液。乳化前加入引发剂,搅拌乳化并通氮气20min。控制一定反应温度至反应转化完全。

聚合反应式:

油气成藏理论与勘探开发技术

用乙醇对乳液聚合物进行分级处理,干燥所得白色粉末研细后在庚烷中搅拌24h,滤饼真空干燥后用于分子量的测定。利用特性黏数法测得乳液聚合物的黏均分子量为7.7×106。

2 乳液聚合物的性能

2.1 乳液聚合物的水溶性

向200mL水中边搅拌边加入乳液聚合物1.0g,实验中乳液聚合物分散迅速,完全溶解时间均小于2min。由此可见,乳液聚合物钻井液添加剂易溶于水,可直接加入钻井液中使用,缩短现场水化及配浆时间,在极短的时间内达到预期的效果。

2.2 乳液聚合物对钻井液性能的影响

用4%膨润土浆作为基浆,在基浆中分别加入乳液聚合物,高速搅拌10min,采用旋转黏度计测试钻井液的流变性。按照石 *** 业标准SY/T5621-93,采用ZNS-1型中压泥浆滤失测定仪测定API滤失量。

乳液聚合物对钻井液性能的影响见表1。结果显示,乳液聚合物的加入可使钻井液的表观黏度、动切力增大,失水量减少。当乳液聚合物加量为0.4%时,可达到钻井液性能的基本要求,满足上部钻井工程的需要。

表1 乳液聚合物对钻井液性能的影响

2.3 乳液聚合物的抗盐能力

在不同加量的氯化钠的基浆中加入1.2%的乳液聚合物,测试钻井液性能,结果见表2。可以看出,乳液聚合物具有较强的抗钠盐的能力,在加量较少时就显示出好的增黏和降失水效果。适合含高矿化度水的地层钻井及驱油。

表2 乳液聚合物的抗盐能力

3 乳液聚合物中试放大试验

由于反相乳液聚合的影响因素很多,在优化合成工艺的基础上,采用国产工业品为原料,考察了合成工艺的稳定性,探索了聚合物合成的工业化,合成了8个批次的样品,并测试了所有产品的性能。表3是乳液聚合物的特性黏数和黏均分子量。所有产品的黏均分子量稳定,且保持在4.1×106~1.5×107。

表3 乳液聚合物的特性黏数和黏均分子量

在钻井液基浆中加入乳液聚合物,高速搅拌10min,采用旋转黏度计测试钻井液的流变性。按照石 *** 业标准SY/T5621-93,采用ZNS-1型中压泥浆滤失测定仪测定API滤失量。表4是乳液聚合物对钻井液性能的影响,可以看出,在20%氯化钠盐水钻井液中,所有乳液聚合物均有效降低钻井液滤失量,显著提高钻井液塑性黏度。由此可见,工艺路线成熟稳定,可以进行扩大生产,为现场先导试验打下了良好的基础。

表4 乳液聚合物对钻井液性能的影响

注:1.基浆成分:5%高造浆率膨润土+0.3%碳酸钠+20%氯化钠;2.0.4%为乳液聚合物的有效含量。

4 现场试验

4.1 大古1井概况

大古1井是2006年中国石化西北分公司部署在天山南古生界碳酸盐岩天然气勘探领域的之一口高难度重点预探井,设计井深6400m,目的层位为奥陶系、寒武系。这一区块钻井难度大,不但会钻遇高压盐水层,而且目的层地质情况也比较复杂。

试验层位为新近系吉迪克组、古近系苏维依组、库姆格列木群及白垩系。试验井段:4450~5900m。钻遇地层膏质泥岩、砂泥岩发育,易造成坍塌、阻卡等事故,特别是吉迪克组存在高压盐水层,对钻井液的性能维护提出了更高的要求。

大古1井主要处理剂:KPAM,NH4PAN,WFT-666, *** P-2,SPNH,CXP-2,GMP-3。正电性添加剂:乳化石蜡(RHJ-1)和乳液聚合物(DS-301)。

4.2 室内试验

为了观察乳液聚合物DS-301 对现场钻井液性能的影响,进行了乳液聚合物对井浆性能的影响评价实验(表5)。结果表明,在室内温度下,井浆中加入0.3%DS-301后对原钻井液塑性黏度和动切力有微弱增大的趋势,瞬时失水增大但对API失水量几乎没有影响,可以入井试验。

表5 乳液聚合物DS-301对井浆性能的影响

注:1.表中T∗为中压失水实验中失水流出的时间,单位为s;2.实验井浆的其他性能如下:密度为1.56kg/L,pH值为8.5,Vs为21.8%,Vb为39g/L;3.实验过程均为6000r/min,高速搅拌20min测量其性能。

4.3 入井试验

大古1井是中石化的重点预探井,钻探的目的在于发现和保护油气层,按新的录井标准(或规范)全烃含量(基值)必须控制在0.5%以内,超过此值后必须停钻处理钻井液。按循环周慢慢加入100 kg DS-301。加入前钻井液的全烃值为0.15%,1.5个循环周以后钻井液的全烃值更大达到0.17%;在对比性不太强的情况下,钻井液的漏斗黏度增加2s,PV和YP有微增的趋向。从对比实验中发现:加入DS-301后钻井液的瞬时失水增大但钻井液的API失水没有太大的变化。

4.4 应用效果

(1)钻井液包被抑制性强、钻屑成型度好、棱角分明。大古1井二开钻屑照片如图1所示。可以看出,钻井液良好的防塌抑制性使大古1井在整个二开施工过程中返出的录井岩屑层次极为分明,成型度极好,PDC钻头切削的痕迹几乎没有任何变化。

图1 大古1井二开钻屑照片

(2)短起及起下钻极为顺利,无任何阻卡现象。大古1井二开2300~4964m井段总共短起17次,每次短起都畅通无阻,没有任何阻卡现象,短起下一次到底率为100%。充分说明了二开钻井液携岩洗井效果好、润滑性良好。

(3)钻井液抗污染能力强,成功穿越多套纯石膏层和高压盐水层。大古1井4802m岩屑照片图2所示。根据实钻资料分析和地质录井提示:大古1井二开钻遇了两层可能的高压盐水层,分别是:4746~4748m段和4859~4860m段;钻遇的3套纯度较高的石膏层是:4754~4756m段、4800~4802m段和4820~4822m段,纯石膏含量达到50%~70%。尤其是在4514m进入大段的膏质泥岩以后,增加了抗盐抗钙处理剂用量,钻井液性能一直保持相对稳定。

图2 大古1井4802m岩屑照片

(4)井径极为规则,井身质量优秀。大古1井二开电测井径曲线如图3所示。图3显示出,φ311mm钻头井眼更大井径为353mm,最小井径为278mm,平均井径为329mm,平均井径扩大率为5.76%,整个二开没有出现“大肚子”井段,充分说明了该井段钻井液防塌抑制性极强,钻井液和钻井工程施工措施到位。大古1井三开井径曲线如图4 所示。通过对大古1井三开井径的统计分析,三开平均井径扩大率为3.03%。

图3 大古1井二开井径曲线

图4 大古1井三开井径曲线

① 1 英寸=0.0254m

(5)钻井液清洁,没有出现任何钻头和扶正器泥包现象。大古1井二开钻井施工中使用一只牙轮钻头、两只PDC钻头(一只DBS三次入井、一只保瑞特钻头)总计5趟钻。从未因钻井液的问题进行起钻,每趟钻起出的钻头、扶正器、钻杆接头处均无任何泥包现象。这正说明了钻井液携岩效果好、钻井液清洁。

(6)全烃值及荧光级别控制良好。整个二开、三开钻井施工中,通过对入井处理剂全烃值和荧光级别的密切监测,并对有些处理剂的加量进行调整和控制,使全烃值大多控制在0.25%以下,保证泥浆录井资料的真实性和准确性。

5 结论

采用反相微乳液聚合 *** 合成了可作为钻井液添加剂使用的乳液聚合物,具有良好的水溶性、增黏、提切、降失水和抗盐性能,当乳液聚合物加量0.4%时,即可达到钻井液性能的基本要求。乳液聚合物中试放大试验结果表明,工艺路线成熟稳定,可以进行扩大生产。

乳液聚合物用于正电性钻井液中,在新疆大涝坝2号构造的大古1井的现场试验表明,钻井液包被抑制性强、钻屑成型度好、棱角分明;短起及起下钻极为顺利、无任何阻卡现象;钻井液抗污染能力强、成功穿越多套纯石膏层和高压盐水层;井径极为规则、井身质量优秀;钻井液清洁、没有出现任何钻头和扶正器泥包现象;全烃值及荧光级别控制良好,取得了理想的应用效果。

参考文献

[1]Leong Y S,Candau F.Inverse microemulsion polymerization[J].J Phys Chem,1982,86(12):2269~2271.

[2]哈润华,侯斯健.(2一甲基丙烯酰氧乙基)三甲基氯化铵一丙烯酰胺反相微乳液共聚合特征研究[J].高等学校化学学报,1993,(14):1163~1166.

[3]王德松,罗青枝.高单体浓度范围丙烯酰胺反相微乳液聚合[J].高分子材料科学与工程,2003,19(4):79~81.

[4]刘祥,晁芬,范晓东.高固含量聚丙烯酰胺反相微乳胶的制备.精细化工,2005,22(8):631~633.

1、反相乳液聚合的基本概况 2、反相乳液聚合的体系组成 3、反相乳液聚合的聚合机理 4、反相乳液聚合的应用

1.概况:

反相乳液聚合与溶液聚合相比具有许多优点,如聚合速率高,得到的乳胶通过调节体系的pH值或加入适当乳化剂的 *** 使聚合物迅速地溶于水,比粉末型聚合物的应用方便得多。从此反相乳液聚合作为常规乳液聚合的一个补充,得到了迅速发展。反相乳液聚合是用非极性液体,如烃类溶剂等为连续相,聚合单体溶于水,然后借助乳化剂分散于油相中,形成“油包水”(2/3)型乳液而进行的聚合。

反相乳液聚合为水溶性单体提供了一个具有高聚合速率和高相对分子质量产物的聚合 *** 。以聚丙烯酰胺及其衍生物、聚丙烯酸及其盐类等水溶性聚合物的研究为起点,反相乳液聚合的研究在现代工业和民用等方面起着越来越重要的作用,尤其是水溶性高相对分子质量聚合物被广泛用于纺织工业中的粘合剂、增稠剂,石油及造纸工业中的絮凝剂、增稠剂和增强剂,以及在涂料、医药等行业的应用。反相乳液聚合具有广阔的发展前景,引起了国内外高分子学者的高度重视。

2、反相乳液聚合的体系组成

连续相 乳化剂 引发体系

3、反相乳液聚合的聚合机理

反相乳液聚合可采用油溶性或水溶性引发剂,形成反相聚合物胶乳。由于体系与常规乳液聚合形成镜式对照,故称为反相乳液聚合。反相乳液聚合体系主要包括:水溶性单体、引发剂、乳化剂、水以及有机溶剂。对于一般的反相乳液聚合,其聚合机理可分为4个阶段:分散阶段、乳胶粒生成阶段、乳胶粒长大阶段和聚合反应完成阶段。

4.反相乳液聚合的应用

(1)制备聚苯胺

聚苯胺是一种导电、导热高聚物。通常聚苯胺是利用过 *** 铵或重铬酸钾为引发剂在酸性水溶液中进行溶液聚合,通过氧化苯胺制得,产物几乎不溶于水及其他极性溶剂,因此很难加工。如聚合产物是胶状分散体形态,则其加工性能将得到明显改善。

(2)制备增调剂

由反相乳液聚合法制备印染用合成增稠剂,产品性能很好,更大的优点是: ①产品最终状态为乳液状,无需经过后处理工序即可直接使用; 生产效率高,成本低,节约能源;产品易于分散在水中,因此在配制色浆时,不再需使用煤油调节,减少了环境污染,降低了危险性。②产品的加工及使用性能好,操作简单易控制;用于印花时,质量高,使用量少。

(3)在造纸工业中应用

反相乳液制备的聚合物用于造纸工业主要是提高填料和细小纤维的利用率,改善纸张的脱水性能,从而提高工艺效率和大大提高纸张的物理2机械指标

(4)在石油开采中应用

在石油钻井、堵水、酸化、压裂、洗井、固井、减阻、防垢及二次、三次采油中,都应用具有增稠、絮凝等性能的物质。用反相乳液聚合 *** 制备的高相对分子质量的聚丙烯酰胺广泛用于上述领域。

(5)其他方面的应用

通过反相乳液合成丙烯酸及其盐和丙烯酰胺等单体的聚合物,具有很高的吸水性,可作卫生用品、密封剂及农林业植物的保水剂;蛋白酶的固定剂、水处理剂及亲水性聚合物分散剂等均用反相乳液聚合 *** 制备。

版权声明

本文仅代表作者观点,不代表本站立场。
本文系作者授权发表,未经许可,不得转载。