电机轴瓦引正压和气封装置专利(发电机封闭母线微正压装置)
怎样改进电动机轴承密封装置?
电动机轴承密封装置的改进措施有以下4点:
1、轴上加工槽形沟密封法
对于苏联电机和老产品电机,由于密封结构不合理造成漏油,在修理时可参照日本东芝电机轴承密封措施进行改装。即在轴上加工出槽形沟,在瓦座上加上挡板插入此槽形沟内密封,效果良好。
操作工艺如下:
①首先在转轴上加工出槽形沟。
大型电机可在原设备上进行,不必放在车床上加工。办法是用一台直流电动机拖动被加工的转子按10~50r/min速度转动。将欲加工的轴承上的上瓦盖和上瓦拆下,下瓦和油环不动,用油环带油,把送油管路阀门关闭,瓦座进出油管口用布包上。为防止切削下来的铁末落入瓦内,需将轴颈两侧用胶皮垫或硬纸板挡好,并压住。在轴瓦分合面处装刀架进行加工槽形沟,加工刀架可利用车床上小刀架。车削时防止轴向窜动,加工后拿出下瓦,清理铁末和污油。在轴颈两侧加工槽形沟时,刀具应反上刀,保证车削时安全。
②将机组下瓦也取出,用备用瓦或木块支承转子,把上下瓦合拢送车床加工。
③按瓦座和轴尺寸设计密封环尺寸和铸铝件。
设计尺寸时要把窜动量考虑好,防止插入槽内的挡板因轴窜动而摩擦。密封环与轴的配合间隙按轴与瓦的配合间隙选择。
2、在轴上加甩油环和密封圈装置
在轴上套入一个带甩油环的套筒,能把露出的油甩回瓦内。在套筒外面装置一个密封圈。对于有足够地方的轴承体内,采用此法能达到防漏目的。
3、增加迷宫式密封装置
结构简单、适用广泛的迷宫式密封装置。出于各部分间隙较小。长度很长,所以对油流产生阻力较大,防油效果较好。
4、延长油环槽措施
为防止油环甩油,将上部轴瓦上的局部油环槽扩展至下瓦接合面以下,能够有效制止甩油。原上瓦的三分之二部分有油环槽,为防止漏油,将油环槽延伸到中心线以下。增加油环槽挡板,用螺丝固定。
高压电动机标准检修步骤
标准如下:
5.1 大修前的准备工作
5.1.1 大修前应检查电动机的振动、电流及温度、轴承声音等,根据检查情况和预防性试验记录及检修记录编制大修项目及检修计划。
5.1.2 组织检修人员学习检修工艺规程及措施和有关注意事项,并进行技术交底,明确分工。
5.1.3 按照大修项目准备检修时必须的工器具、材料及检修记录,对起吊工具认真进行检查,必要时做拉力试验。
5.1.4 按《电业安全工作规程》办理工作票手续,做好现场安全措施,并进行安全交底。
5.2 电动机的解体
5.2.1 电动机的解体,应根据各电动机的具体结构和现场检修条件正确实施并保证安全,起吊大型电动机一般应有起重工配合 5.2.2 大型电动机解体常规步骤
5.2.2.1 拆开电缆头,将电缆头三相短路接地,并支撑保护好。
5.2.2.2 拆卸电动机地脚螺丝、对轮螺丝、外壳接地线及冷却装置等。 5.2.2.3 拆卸对轮.
5.2.2.4 先拆非负荷侧轴承盖、端盖,再拆负荷侧端盖、轴承盖。 5.2.2.5 安装专用工具,抽出转子。 5.2.3 抽转子的常规 *** :
5.2.3.1 小电动机由人工直接抽出。 5.2.3.2 用行车双钩接假轴抽转子。
5.2.3.3 在电动机座上固定专用导轨抽转子。 5.2.3.4 用行车或单轨悬臂工具抽转子。
5.2.3.5 用倒链悬臂吊工具加小平车移动定子抽转子。 5.2.4 解体的质量要求:
5.2.4.1 拆卸的各部件、地脚垫片应做好记号,拆开的引线做好相序记号,并妥善保管,原拆原装。
5.2.4.2 检查各起吊工具的载荷量。起吊时钢丝绳与垂直方向的夹角不应大于600。
5.2.4.3 拆卸应用专用工具,正确拆卸。禁止乱撬乱打,要特别注意止口及各配合面不受损伤。
5.2.4.4 对大电机过紧的靠背轮,可用火烤把加热拆卸,加热应均匀,温度在100 ℃一150℃时即可进行扒拆,加热温度不宜超过200℃。
5.2.4.5 抽转子时应用透光法进行监视,检查定转子铁芯不得摩擦、碰撞,不得伤及定子线圈、风扇、轴颈、笼条等部件。
5.2.4.6 抽出的转子应用道木垫好,防止滚动并做好防尘、水、汽的措施。 5.3 定子的检修及质量标准
5.3.1 吹灰清扫定子时,应用2—3kg/cm2的清洁、无油、无水的压缩空气进行。除去线圈上的油污时可用航空汽油、四氯化碳、甲苯或带电清洗剂等进行擦试,不得使用有害溶液或金属工具。
5.3.2 线圈无接地、短路、断线等故障。线圈绝缘表面应无损伤、龟裂、变色、焦脆、磨损及严重变形等现象,否则应查明原因予以处理。各绑线、撑条、垫块、槽楔等应无松动、断裂。
5.3.3 定子铁心应无擦铁、过热、生锈、松动和变形等现象,通风沟畅通。撑铁和压板平整无松动,锁键紧固焊接可靠,否则应查明原因予以处理,必要时可作铁损试验进行鉴定。
5.3.4 引线和跨接线良好,绑扎牢固焊接可靠,各焊接头无过热现象,有足够的机械强度和绝缘强度。
5.3.5 电动机接线端子相色齐全正确,各载流螺栓螺母和垫片均为铜质,且完好齐全。连接处应平整紧密良好,并要可靠锁紧。连接板绝缘良好无焦脆现象,瓷瓶牢固无裂纹损伤。
5.3.6 机座、端盖、接线盒、风罩和挡风板等应完好无损。止口无损伤和严重变形磨损。配合尺寸符合要求。否则应采用镶套、烧焊、电镀或更换等 *** 进行处理。
5.3.7 绝缘电阻不符合要求的受潮电动机,应采取吹灰、清擦、干燥等 *** 进行处理。
5.4 转子的检修及质量标准
5.4.1 鼠笼条无断裂松动,短路条无开焊,对断裂的笼条采取焊接或更换等 *** 进行处理。新笼条的材料和截面与原笼条相同,焊接时一律采用银铜焊。 5.4.2 转子铁心应紧密平整,无过热、生锈、松动、变形和断齿等现象,槽楔应紧固完整,无空洞声。通风沟应畅通。转子撑铁和锁键无脱焊松动。转子应用2—3kg/cm2压缩空气吹净。 5.4.3 大轴无弯曲或裂纹,与铁心的配合良好,轴颈应完整无磨损、无毛刺。 5.4.4 转子风扇固定牢固,无松动裂纹,与轴的配合良好。平衡块无松动位移,顶丝锁紧可靠。
5.4.5 靠背轮无裂纹,内孔配合面与找正面光洁,轴孔键三者配合符合要求,对轮配合螺丝正确并可靠锁紧。
5.4.6 松动的转子部件,经处理或更新后,应作静平衡,必要时做动平衡试验。
5.5 轴承的检修及质量标准
5.5.1 轴承清洗后应无裂纹,表面无金属剥落、锈蚀、麻点和过热等现象,夹持器不应出现松动、变形、卡涩和严重磨损等现象,否则应予以更换。
5.5.2 轴承间隙合适,转动灵活,无明显晃动或过热现象,一般轴承的间隙应符合下表:
轴承类型 80以下(mm) 8—100(mm) 100—120(mm) 120—140(mm) 滚 球(mm) 0.03—0.05 0.04—0.08 0.05-0.10 0.06--0.12 滚 柱(mm) 0.05—0.07 0.05—0.08 0.06—0.10 0.07—0.12
5.5.3 当轴承不符合上述要求时,或使用寿命到期、运行中有异音等,应更换新轴承,新轴承的型号与原轴承相同,精度及结构等应符合要求。
5.5.4 新装轴承必须用油或轴承加热器均匀加热,温度不宜超过100℃,装轴承必须加衬垫,不得用榔头直接敲打,并应检查安装到位,拉轴承时应使用合适的专用工具,一般大轴承应使用加热拉下,以免拉毛轴颈。
5.5.5 润滑油脂应清洁无杂质、结块、水分、变质,型号正确,不得同时使用不同型号的润滑脂。一般常用的润滑脂为3#、4#二硫化钼,加油量为轴承盖内腔的1/2—2/3(高速1/2,低速2/3)。
5.5.6 轴颈无偏心、椭圆、毛刺、裂纹及严重损伤痕迹,对有损伤的轴颈应采用镀铬、镀铁、补焊及镶套等 *** 进行处理,加工时应特别注意轴与铁芯的同
(window.cproArray = window.cproArray || []).push({ id: "u2280119" });
心度及尺寸配合精度,大电动机轴烧焊后,应进行热处理,以防应力集中而发生断轴事故。
6. 电动机的组装、试运及验收 6.1 电动机的组装
6.1.1 电动机的组装与解体顺序相反。
6.1.2 组装前应检查定子腔内无杂物及遗留工具,检查止口及各配合面光洁无毛刺配合尺寸符合要求。
6.1.3 装转子时要用透光法检查,不得碰伤定子线圈,吊装工具可靠,使用正确。
6.1.4 电动机的气隙,对不可调整的大电动机,应在之一次大修时进行检查性测量,对可调整的轴瓦电动机,每次检修时应测量调整。各点气隙与平均值之差不应大于平均值的±5%,配合面磨损的电动机,应复查间隙。
6.1.5 低压电动机,如电气单独检修,由电气自行找正。一般找正要求:靠背轮的轴向及轴径允许误差为0.05mm。 6.1.6 接线瓷瓶无裂纹损伤、固定牢固,电缆鼻子连接紧密,螺母可靠锁紧,电缆固定可靠,瓷瓶不受应力,接线盒严密,重要电动机应装窥视孔于接线盒上。 6.2 电动机的试验
6.2.1 试运转前,应测量定子线圈各相直流电阻,相互差别不应超过最小值的2%。
6.2.2 测量电动机绝缘电阻应不低于下表规定,500kw以上的大型电动机还应测量吸收比R60/R15≥1.6(环氧粉云母绝缘)。 测量部位 绝缘电阻兆欧) 兆欧表(伏) 380v
电动机 定子线圈 0.5 1000 转子线圈 0.5 1000 刷 握 1 1000
6ky电动机 6 热态) 2500
6.2.3 定子线圈的耐压标准如下 标准电压等级 交流耐压(伏) 持续时间 380v电动机 1000 1分钟 6ky电动机 9000 1分钟
6.2.4 500kw以上电动机应进行定子线圈直流耐压及泄漏电流测量,电压标准如下:
全部更换绕组:3倍额定电压;大修或局部更换绕组:2.5倍额定电压。 6.3 电动机的试运及验收
6.3.1 电动机的现场应清洁,标志齐全(转动方向及设备名称),各螺丝紧固,接线连接可靠,冷却系统及油系统投入正常。
6.3.2 全部保护、测量、操作、信号、应完整,并经试验。继电保护的整定值应选择正确,低压电动机的一次保险器接触良好,保险丝选择正确。 6.3.3 盘车检查时,应转动灵活,无卡涩及金属碰击异音。
6.3.4 进行空载试运行30分钟,并测量三相空载电流,不平衡值不应超过平均值的10%。
6.3.5 电动机各部位更高允许温度值如下表: 名 称 更高温度限值℃(温度计法)
定子线圈 100 定子铁芯 100 滑 环 105 滑动轴承 80
滚动轴承 100(油脂质量差时不超过85℃) 注:部分F级绝缘电动机可参考厂家规定执行
6.3.6 轴承振动允许双振幅值标准如下表所示: 同步转速r/min 3000 1500 1000 750及以下 轴承振动允许双振幅(mm) 0.05 0.085 0.10 0.12
6.3.7 滑环、换向器及电刷的工作应正常,火花等级在1/2以下;
轴瓦是什么
轴瓦,又称“滑动轴承”。例如用铜 *** 的滑动轴承,通过铜瓦摩擦面上面的油槽润滑,起到与滚珠轴承类似的“支承”作用,减少轴的摩擦力。
轴瓦在大型汽轮机、发电机之类的设备中应用广泛,用巴氏合金类,高压油润滑。
发电机使用 ***
发电机结构介绍
一、概述
5号发电机为 QFSN 型额定容量 600MW的优化型水氢氢汽轮发电机,是上海电机厂对引进型 600MW 发电机机组进行优化设计后的产品。
发电机型号 QFSN 一 X 一 2 所代表的意义是:
QF 一一代表汽轮发电机, x ― 代表兆瓦额定容量, S ― 代表定子水内冷,
2 ― 代表二极, N ― 代表氢内冷,
例如: QFSN 一 600一 2 代表 600 兆瓦、二极水氢氢汽轮发电机,
QFSN 一 650一 2 代表 650 兆瓦、二极水氢氢汽轮发电机。
发电机组采用了引进的高起始响应的励磁系统,能在电力系统故障时 0 . 1 秒内达到顶值电压与额定电压之差的 95 %。
主要结构均保留引进型机组原有的结构,如穿心螺杆、磁屏蔽、分块压板固定的定子铁心、上下层不同截面的定子线圈、刚一柔结构的定子端部固定、端盖式轴承、可倾瓦式轴瓦、双流双环式密封瓦等;转子采用气隙取气冷却方式,改进了转子阻尼结构,提高电机负序电流承载能力。
氢冷发电机机座设计成“耐爆”型压力容器,就是指机座应能承受氢气和空气混合体的最强烈的爆炸。这类爆炸不得损伤电机外部的人员、器材和厂房。这种事故只有在气体置换过程中,出现误操作的情况下才可能发生。正常运行时氢压远大于大气压,空气是不可能直接进入机座的,故只要维持必要的氢气纯度,充氢运行时发电机是很安全的。
二、发电机结构
1、定子
1.1 定子机座和隔振结构
发电机采用焊接的机座结构,用优质中厚钢板及锅炉钢板冷作拼焊而成,两端焊接式端盖支撑着对地绝缘的可倾式分块轴承。机座底脚与底板(台板)之间设置阶梯形垫片使机座的负荷集中作用在基础的两端,对称分布在两侧,很快向中间衰减,并在现场测试发电机底脚应力分布加以复核调整,确保定子机座两端的载荷分布,以改善与定子机座相联接的端盖轴承的支承刚度来降低机组的振动。
铁芯是通过高强度弹簧钢板组成的高效隔振装置固定在机座内的。当发电机运行时,转子和定子铁芯之间的磁拉力在定子铁芯中产生倍频振动,为此在本发电机的定子铁芯装配和发电机机座部件之间采用隔振性能较好的弹簧板弹性支撑结构,就使铁芯传到机座和基础上的倍频振动减少到很小。
在机座的顶部,汽、励两端各设有一个安装冷却器外罩用的长周边矩形法兰结合面,在结合面上开有矩形密封槽,内充满密封胶以防氢气泄漏之用;在励端底部另设有一个长周边法兰结合面用以联接出线盒。
机座的顶部还设有人孔、检查孔,都由盖板密封:在底部则设有清理孔法兰、用于气体置换的管道接口法兰,以及测量气体纯度的、气体分析取样的、浮子式液位控制器(检漏器)和氢气干燥器等的管道接口,还有两端的定子水系统排污法兰。
1.2 定子铁芯
铁芯采用 0 . 5 毫米厚扇形高导磁率、低损耗的无取同冷轧硅钢片迭装而成。在扇形硅钢片的两侧表面涂有 F 级环氧绝缘漆。定子铁芯轴同用反磁支持筋螺杆和对地绝缘的高强度反磁钢穿心螺杆,通过两端的压指、压圈及分块压板用螺母拧紧成为整体,经过数次冷态和热态加压、并紧固螺母而成为一个结实的铁芯整体。在铁芯的两边端齿上开有分隔槽,并用粘结胶将边端粘结形成整体。在两端压圈与反磁险分块压板之间设有用硅钢片迭压并加以
粘结起来形成内圆为阶梯形看台式的磁屏蔽,减少了端部漏磁引起的附加损耗,降低端部温升,使发电机具有良好的进相运行的能力.
铁芯内设有许多径向通风道组成氢气表面冷却、多路并联通冈.、对应转子进风和出风相互间隔的十多个风区。还在铁芯内圆上进风和出风风区之间、环绕气隙上部六分之五的圆周上镶装风区隔环以减少串风,提高通风散热的效能.
1.3 定子线圈及定子绕组
水内冷的定子线圈是由实心股线和空心导线交叉组成,空实了白铜线之比为 1 : 2 ,均包有玻璃丝绝缘层。上层线棒的导电截面积要比下层的大;上层由 4 排、每排 5 组空实股线组成,下层为 4 排 4 组。这种设计可明显地降低线棒附加损耗。槽内股线间进行了 540 度罗贝尔空换位,也起到减少绕组附加损耗的作用。定子线棒端部为渐开线式,采用鼻端不等距的结构,缩小同相距离,扩大异相鼻端的放电距离,故上、下层线棒端部节距不同,共有 7 种规格。
线棒的空实心股线均用中频加热钎焊在两端的接头水盒内,而钎焊在水盒上的水盒盖则焊有反磁不锈钢水接头,用作冷却水进出线棒内水支路的接口:套在线棒上或汇流管上水接头的四氟乙烯绝缘引水管,都用引进型卡箍将水管箍紧。卡箍结构详见附图 17 。上下层线棒的电联接由上下水盒盖夹紧多股实心铜线,用中频加热软钎焊而成,并逐只进行超声波焊透程度的检查,这样就形成上下层线棒水电的联接结构。采用中频加热钎焊接头水盒的工艺和卡箍箍紧水管的结构,进一步提高了定子绕组水路的气密性。水电接头的绝缘采用绝缘盒作外套,盒内塞满绝缘填料,并采用电位外移法逐一检验绝缘盒外的表面电压,使保证水电接头的绝缘强度。
定子绕组为 60 度相带、三相、双层绕组,双支路并联、 Y 连接。定子线圈的空心导线内通过冷却水以冷却铜线,因此线圈温升很低,但定子线圈对地绝缘仍采用 F 级环氧云母带连续绝缘,确保使用寿命。在线圈的槽内直线段和出槽口、端部均进行了表面防电晕处理。
定子线圈在槽内固定于高强度玻璃布卷包模压槽楔下,在铁芯两端用割有倒齿的关门槽楔就地锁紧,防止运行中因振动而产生的轴同位移。楔下没有高强度弹胜绝缘波纹板,在径向压紧线棒二在部分槽楔上开有小孔,以便检修时可测量波纹板的压缩度(有随机测量工具)以控制槽楔松紧度。在槽底和上、下层线棒之间都垫以热固性适形材料,口槽楔松紧、使不百互间保持良好接又采用了涨管热压工艺,使线棒能在槽内紧固可靠地就位;为了线棒表面度触能良好接地,防止槽内电腐蚀,在侧面用半导体板紧塞线棒。见附图 2 “定子绕组在槽内固定及定子槽楔布置示意图”。在每个槽上、下层线棒层间埋置一支电阻测温元件,每一根上层或下层线棒绝缘引水管的出口水接头上,也各埋有一支热电偶测温元件,用来检测相应部分的温度。
定子绕组的端部全部采用美国西屋公司刚 一柔绑扎固定结构。它由充胶的层间支撑软管、可调节绑环、径向支撑环、绝缘楔块和绝缘螺杆等结构件以及绑带、适形材料等将伸出铁芯槽口的绕组端部固定在绝缘大锥环内、成为一个牢固的整体,绝缘大锥环的小直径端搁在铁芯端部出槽口下的覆盖着滑移层的绝缘环上,而绝缘大锥环的环体则固定在绝缘支架上,支架的下部又通过弹簧板固定在铁芯端部的分块压板上、形成沿轴同的弹性结构,使绕组在径向、切向具有良好的整体性和刚性,而沿轴向却具有目由伸缩的能力,从而有效地缓解了由于运行中温度变化而因铜铁膨胀量不同在绝缘中所产生的机械应力,故能充分地适应机组的调峰方式和非正常运行工况。水冷的定子绕组连接线也固定在大锥环和绝缘支架上。为了运行安全,绕组端部上的紧固零件全部为高强度绝缘材料所制成。
在绕组端部靠近铁芯出槽口的可调节绑环上,汽、励两端各设有一道气隙挡风环(板),用以限制进入气隙的风量。
1.4 定子出线和发电机出线盒
定子出线导电杆是装配在出线瓷套管内的,组成了出线瓷套端子。结构设计使定子出线穿过装在出线盒上的绝缘瓷套管,将定子绕组出线端子引出机座外,并保证不漏氢又不漏水。出线瓷套端子共有 6 个,其中 3 个主出线端子通过金具引出;另外三个斜装的为中胜出线端子,由中性点母板及编织铜排连接起来形成中性点;出线瓷套端子和中性点母板均为水内冷。出线瓷套端子对机座和对水路都是气密的。
以每个出线瓷套端子为中心,从出线盒向下吊装着 4 个同白的电流互感器提供给仪表测量或继电保护用。
出线盒外形像长筒形压力容器由不锈钢板拼焊而成,既“耐爆”又有足够的刚度,可安全地支撑着定子出线瓷套端子及套装在瓷套管外的电流互感器。每个出线盒亦要通过与机座相同等级的水压及气密试验的严格考核,具有良好的强度、刚度和气密性能。不锈钢饭为反磁性,故大大减少了主出线导电杆上大电流在其周围的钢板上所产生的涡流损耗。在出线盒上与机座结合的大平面上开有 T 型密封槽,用以加压注入液态密封胶,杜绝氢从结合面上的缝隙中渗漏出来的可能性。
1. 5 定子水路
1.5.1 总进出水汇流管
总进、出水汇流管分别装在励端和汽端的机座内,对地设有绝缘,运行时需接地。它们的进、出水口及排气管分别放在汇流管上方,这是为了防止绕组在断水情况下失水的措施。但它们的法兰设在机座的上侧面,便于和机座外部总进出水管相联接。排放水管口分别放在机座两端的下方,具有特殊设计的结构;它对机座是密封的但能适应温度变化而产生的变形,对机座和相连接的外部管道都是可靠地绝缘的。在外部总进、出水管上装有测温及报警元件。在用水冷专用摇表测量定子绕组绝缘电阻时,要求总进、出水汇流管对地有一定的绝缘电阻,而在做绕组耐电压试验时又要求把它们接地;为了试验时方便,在接线端子板上各设有接地接线柱,专为变更总进、出水汇流管及出线盒内出水小汇流管对地绝缘或接地之用。
1.5.2定子绕组水路
冷却水从励端或集电环端的总进水汇流管通过连接的聚四氟乙烯绝缘引水管流入定子线棒,再从线棒出水接头通过绝缘引水管流入总出水汇流管。每根上层或下层线棒各自形成一个独立的水支路,共有 84 个并联的线棒水支路。请参阅出厂文件“定子线圈水电连接图”。
如上图,另有六路冷却水从励磁机端或集电环端的总进水汇流管进入,也通过绝缘引水管流经绕组引线,即线圈端部连接线,主引线及出线瓷套端子或中性点母线后,进入出线盒中的小汇流管,再从外部管道流入汽端总出水汇流管,然后一起引出到外部总出水管,流回定子水箱。
1.5.3氢气漏入定子水路问题
由于氢压大于水压,在管道 、 绝缘引水管 、 水接头或空心铜线内如存在微、细裂纹或毛细小孔,一般情况下定子水路不会漏水,但氢气会从小孔细纹处漏入定子水系统。漏入水系统的氢气积蓄在储水箱的顶部,通过安全阀设定在0.035 兆帕压力下释放,排入大气。在储水箱的排气管上装有一只氢气流量表,可以测定氢气漏量。请
1.6 氢冷却器及其外罩
发电机的氢冷却器卧放在机座顶部的氢冷却器外罩内。在汽、励两端的氢冷却器外罩内各有一组氢冷却器,每组分成二个独立的水支路。当停运一个水支路时,冷却器能带 80 %的负荷运行。
氢冷却器外罩为钢板焊接的圆拱形结构,横向对称布置安装在发电机机座的两端顶部。这样既可减少发电机轴向长度,运输时另行包装,又可减少足子运输尺寸和重量。
外罩是用螺钉把合在机座上,并在结合面的密封槽内充胶密封,连接成为整体。外罩热
风侧的进风口跨接在铁芯边端的热风出风区的机座顶部,其冷风侧的出风口座落于机座边端冷风进风区的上部,由机座边端之一隔板和与其结合在一起的内端盖和导风环构成设在转子上的风扇前后的低、高压冷风区:外罩的顶部处于发电机的更高位置,故在该处内部设置了充、排氢管道,在励端外罩顶部内还设有氢气纯度风扇的两根取样管,在汽端则有一根气体分祈取样管,这些管道的进出口都设在发电机机座的底部。
冷却器的前水室端是用螺栓刚性地固定在(发电机机座顶部的)氢冷却器外罩右侧边框上,进出水管都连接在前水室前部的进出水管口上。在前水室顶部设有四个排气孔,底部设有两个排水孔。在冷却器后端的后水室则用不锈钢垫片支撑在氢冷却器外罩左侧边框上,该垫片使冷却器能随温度变化而目由胀缩。后水室的外端用框形隔板及钢板顶盖密封,在这个空间设有一个放气阀。为了确保安全,在拆顶盖之前必须先打开放气阀,释放盖内压力。在拆卸了顶盖和后水室的盖板之后,才能检查冷却器内的翅片管。此外在冷却器后水室端面的外罩框口上侧,有一个通孔接有一个旁路阀通往后水室顶盖内的空间,在正常运行时用以平衡不锈钢薄垫片两侧氢气压力。当发电机充氢升高压力时,应打开平衡阀,关闭排气阀使不锈钢垫片的两侧压力均等。在气密盖板上有一专用的注意事项标牌,在铭牌上刻有安全操作的说明。
为了防止冷却水直接漏入机内,在冷却器与机座之间采用迷宫式挡水隔板,并在前、后水室二端的冷却器外罩底部设有 ZG1 /2螺孔,可接出浮子式液位控制器(检漏报警仪)的排放管道供检测冷却器有无漏水情况。
2 转子
转子由转轴、转子绕组、转子绕组的电气连接件、护环、中心环、风扇、联轴器和阻尼系统等部件构成
2. 1 转轴发电机转轴由高机械性能和导磁性能良好的 26CrZNi4Mov 合金钢锻件加工而成。在转轴本体大齿中心沿轴向均布地开了多个横向月形槽,又在励端轴柄的小齿中心线上开有两条均衡槽,以均衡磁极中心线位置的两条磁极引线槽。这些都是为了均匀转轴上正交两轴线的刚度,从而降低倍频振动。在大齿上开有阻尼槽,使发电机在不平衡负载时可以减少在横向槽边缘处的阻尼电流和由此引起的在尖角处的温度急剧升高,有效地提高了发电机承受负序的能力。为削弱运行时在近磁极中心的气隙磁通和转子辆部磁通局部饱和,改善绝场波形,在靠近大齿的两个嵌线槽分别采用了不等间距分布,而 l 号线圈 4 个嵌线槽还同时采用了浅槽 , 为尽量增加铜线截面,嵌线槽采用开口半梯形槽;还开有小齿导风槽、供探伤用的半圆弧槽、供亚衡用的平衡螺钉孔等:此抓在探洗槽的两端的大齿端头,还开了两个洪绕组端部轴同徘风用的月牙形槽。
2. 2 转子绕组
转子线圈由冷拉含银无氧铜线加工而成,因此既抗蠕变,又防氢脆:每一磁极有 8 组转子线圈,每匝线圈由上下二根铜线组成,其中# 1 线圈 6 匝. # 2 一# 8 各为 8 匝。每圈导线由直线、弯角和端部圆弧所组成。直线部分有 8 种规格,端部有 12 种规格总共有 20 种规格。这些另件都是采用精密加工成形的舌樵接头用中频钎焊拼接而成形,在出厂前还要测转子绕组在不同转速下的交流阻抗以检查转子有无匝间短路,以保证质量。
转子本体采用了气隙取气斜流通风方式。线圈在槽内的直线部分沿轴向分成+多个进、出风区相间的区段,在宽度方向各为二排反方向斜流的径向风孔。在转子线圈的槽楔上加工形成风斗,风斗有两种形式:放在进风区的为吸风风斗,在出风区的为甩风风斗。来自定子铁芯径向风道的氢气,被转子进风区的吸风风斗从气隙吸入转子线圈中两条反向的斜流风道(称为一斗两路),再从线圈底部进入左右两侧反问的斜流风道,进入出风区,热风贝} J 从左右两条对称的斜流风路出来,相遇于一个甩风风斗后被甩出槽楔,排入气隙的转子出风区,再进入定子铁芯的径向风道;这样就形成了与定子相对应的进、出风区相间的气隙取气斜流
通风系统。
2.3转子端部线圈为轴向氢内冷,由二根冷拉成形的 n 形铜线上下对叠而成,中间形成冷却风道,迎风侧开有进风孔,为了降低端部绕组的更高温度采用缩短风路的办法,将冷氢从迎风侧吸入风道后分成两路;其中一路沿轴问流同槽、部的斜向出风道,再从槽楔经过甩风风斗排入边端出风区气隙:另一路沿端部横向弧形风道流问磁极中心,从极心圆弧段上侧面的出风孔排入端部的低压热风区,然后从大齿两端的月牙形通风槽甩入边端出风区的气隙。这种端部两路通风结构有效地降低了端部大号线圈的更高温度,使整个转子绕组温差较小而且温度较低。
2.4 转子绕组在槽内的对地绝缘为高强度复合箔热压成形槽衬,匝间绝缘为带状玻璃布板,粘贴在每匝导线的底部。护环下的绝缘由绝缘漆浸渍的玻璃布卷成的绝缘玻璃布筒加工而成。在转子铜线与槽绝缘、护环绝缘和楔下垫条间均各压粘有聚四氟乙烯滑移层,使铜线在离心力高压下能自由热涨冷缩,避免永久性残余变形,以适应调峰运行工况的需要。
2.5 转子绕组的极间连接线由弯成两半圆的对扣凹型导线构成。两半圆之间的联结由高强度含银铜箔构成柔性联接,这种结构有利于转子两极的重量均衡,具有良好的变形能力从而减少应力。
转子磁极引线由开有凹槽的两半 J 型导线和贝型的柔性连接线组成。引线的一端通过含银铜片组成贝型柔性连接线与转子励端一号线圈底匝相连接,另一端与径向导电螺杆相连接。引线放置在线圈端部下的引线槽内,用槽楔和压板加以固定。引线采用柔性连接,使其具有良好的热变形能力和抗弯能力。
轴向导电杆,径向导电螺杆采用了高强度的锆铜合金等材料,使其能承受结构件离心力所产生的高应力。导电螺钉外表面热滚包环氧玻璃布绝缘,导电螺钉与转轴之间的密封采用人字型特制橡胶密封圈的压紧螺帽结构,密封效果良好,可经受 1 . 4 兆帕气密试验。轴向导电杆在励端轴端处形成 L 型由含银铜片钎焊接成的柔性连接板,与无刷励磁机转子 L 型引线构成电气联结。在导尾杆中部分段处也采用柔性联接结构,以吸收由于温度变化引起的变形,保护密封,在其 L 型端面联结螺孔内设置不锈钢衬圈,以防止损伤基本金属。
2.6 转子槽楔、护环、中心环、风扇环、联轴器、风扇叶片
转子槽楔由铝合金制成,在径同开通风道,具有气隙取气进、出风斗的作用,槽楔上的风斗结合楔下垫条中特殊风孔型式形成一斗二路,并具有两路流量均匀分配的通风方式。护环下端头槽楔则由铍钴锆铜合金制成。
转子线圈端部由具有良好的耐应力腐蚀能力的 18Mnl SCr 整体锻制的高强度反磁合金钢护环来支撑,护环热套在转子本体端部的配合面上为悬挂式结构。
中心环、风扇环、联轴器均为合金钢锻件,风扇叶片为铝合金锻件。单级螺浆式风扇对称布置在转子两端向定子铁芯背部及转子护环内部送风。
2.7 转子的阻尼系统
转子本体大齿上月牙槽边缘处的负序涡流发热的温度更高,而发电机负序能力的大小主要取决于这个部位的温升。在发电机转子本体大齿部分每极开了三个阻尼槽。槽内放置高导电率、高强度的铍钴锆铜槽楔,可以分流较多的负序电流,但如各段槽楔间连接不好,电流势必从一根槽楔经过齿部流向另一根,导致在槽楔连结处的齿部电流集中而局部过热。因此还要在两根阻尼槽楔的连接处设置一个镀银的铍钴锆铜搭接块,并在搭接块底部的凹槽内放入两个弹簧以顶住槽楔,保证搭接块和两根槽楔之间有良好的电连接。
发电机转子嵌线槽的槽楔材料为 *** 12高强度铝合金(除大齿旁的槽楔材料为铍钴锆铜外)。在每两很槽楔的连接处也设置镀银的搭接块,以保证槽楔之间有良好的电连接。
3 端盖、轴承、油密封
3.1 端盖轴承
发电机的轴承与密封支座都装在端盖上。这样可以缩短转轴长度并具有良好的支承刚度,由于轴承中心线距机座端面较近,使端盖在支承重量和承受机内氢压时变形最小,以保证可靠的气密性。
端盖与机座、出线盒和氢冷却器外罩一起组成“耐爆”压力容器。端盖为厚钢板拼焊而成,为气密性焊缝,焊后进行焊缝的气密试验和退火处理;并要承受水压试验的考验。上、下半端盖的合缝面的密封及端盖与机座把合面的密封均采用密封槽填充密封胶的结构。为提高端盖合缝面连接刚度,端盖合缝面采用双排连接螺钉。
发电机的轴承为分块式可倾瓦轴承,其上半部为圆柱瓦,下半部轴瓦则为二块纯铜瓦基体的可倾瓦,其抗油膜扰动能力强,具有良好的运行稳定性。轴瓦与其定位销均与下半轴承座绝缘;上半轴瓦与端盖之间亦加设轴承绝缘顶块。在冷态时上半轴瓦与绝缘顶块间留有 0 . 125 一 0 . 38 毫米间隙,为轴瓦热态膨胀留有余地。下瓦的两块可倾瓦均设有供启动用的对地绝缘的高压进油管及顶轴油楔,以降低盘车启动功率和防止在低速盘车启动时在轴颈处造成条状痕迹。为防止轴电流,除轴瓦对端盖绝缘外,密封支座和端盖之间,端盖与轴承外挡油盖之间都设有绝缘;外挡油盖上的油封环用超高分子聚乙烯制成,可避免在轴上磨出沟槽,同时亦具有绝缘性能。发电机的励端端盖轴承、油密封及外挡油盖均为双重绝缘,即上半轴瓦顶部绝缘轴承顶块及下半轴承座的绝缘轴承座块和轴承外挡油盖均为双层式绝缘结构,并在密封支座与端盖之间增设一个对地绝缘的中间环,这样就加强了励端转轴对机座端盖的绝缘,又便于在运行过程中对转轴和轴承与油密封的绝缘电阻进行监测,有利于防止轴电流损伤转轴、轴承和密封瓦等。
在各轴承的外挡油盖上均设有可测轴振的传感器。在轴瓦上离钨金表面 3 毫米处埋有 E 分度镍铬一康铜热电偶,可测钨金温度。
3.2 油密封装配及密封供油装置
本发电机采用西屋引进技术双环双流环式油密封系统的先进设计。其作用是通过轴颈与环式密封瓦氢气侧与空气侧之间的油流阻止了氢气外逸。双流即密封瓦的氢气侧与空气侧各有独立的油路。当两路密封油经过密封支座上各自的油道、进入双流密封瓦中各自的油槽时,平衡阀控制着氢侧进油系统使氢侧油压与空侧油压维持均衡,于是两路密封油就互不相让,各自从轴颈表面分别流问氢侧与空侧,充分发挥了密封氢气的作用。平衡阀的精密度严格控制了两路密封油的互相串流,从而大大减少了氢气的流失和空气对机内氢气的污染,使氢气的消耗量少于单流环式。
在密封瓦的空侧进油系统中差压阀跟踪机内氢压,从而控制着空侧油压,保证油压大于氢压,严格地维持着 0 . 084 兆帕的油氢压差。如前所述,在氢侧进油系统中是由平衡阀跟踪空侧油压,控制着氢侧油压,使两者保持平衡。从密封瓦流出的氢气侧回油汇集在密封支座下方,位于下半端盖外侧的消泡箱内。流入消泡箱内的油中释放出来的氢气泡沫被隔离在箱内、而氢气则回到机内,氢侧油则流回密封油供油装置上的氢气侧回油箱,通过氢侧油泵及冷油器或加热器和过滤器再进入氢气侧油路中循环。而从轴上流出的空气侧回油则流入轴承座与轴承回油一起流回主油箱、在途中先流经空气侧回油箱,油中带有的微量氢气在此被 U型油封管堵住,而被抽油烟风机排出回油箱,使回到主油箱的轴承油不含氢气,保证了主油箱的运行安全。空侧油泵则将一部分回油从空侧回油箱抽出,通过冷油器或加热器及过滤器送回密封瓦。密封油系统为空侧油泵设有三个备用油源,用来保证密封油的供应,确保运行安全。
密封瓦跨着轴颈,座落在密封支座的瓦槽中,而支座是安装在端盖上的,但与端盖既是绝缘的又是密封的:在励端密封支座与端盖之间加装了一个绝缘的中间环,使之成为双重绝缘,能在运行中连续监测它的对地绝缘电阻。
船用大型柴油机
一、 产品概况
135、138系列柴油机隶属中等缸径中等功率柴油机系族,产品以其良好的动力、经济性能,具有维护简单、使用方便、配件互换通用性好、价格低等诸多优点,广泛应用于船舶主机和辅机、陆用发电机组、工程机械及载重汽车等。随着技术的不断进步,市场的变化和发展 135、138系列柴油机为四冲程、直接喷射、水冷式高速柴油机。按气缸排列方式分有2、4、6、8缸直列和12缸V型;按进气方式分有自然吸气(即非增压)、增压及增压中冷型柴油机;按活塞行程分有140、150、155、158、160、163、168和170mm8种。目前产品有200多种。我公司生产的船用柴油机(主/辅机)的功率(无限航区45℃环境温度下的额定功率)覆盖范围为24kW(33马力)~368 kW(500马力),可满足100~2000吨各种船型的配套需要。此外,本公司生产的130 kW以上的船用柴油机(主/辅机)均通过国际海事组织(IMO)NOx排放测试,具有中国船级社认可颁发的EIAPP(国际防止污染符合证明)证书;发电型柴油机的更大功率覆盖范围为27.9kW (38马力)~662 kW (900马力),可配套20~660kW 陆用或船用发电机组。
二、产品结构
1、主要结构参数
2、柴油机总体布置
三、主要零部件介绍
3.1主要固定件
机体、气缸盖和油底壳等部件构成了柴油机的骨架,所有运动部件和辅助系统都以此为支承。因此,我们说到柴油机的固定件,通常是指机体、气缸盖、油底壳等。
3.1.1气缸盖:气缸盖的主要功用是和气缸垫共同密封气缸的上平面,并与活塞顶部共同形成燃烧室空间。此外,气缸盖上还提供许多零部件的安装位置,上面安装有气门座、气门导管、进排气门、气门弹簧、喷油器、摇臂、摇臂轴及摇臂座等零件,其内布置进、排气道、润滑油道、水腔,结构相当复杂。我公司的气缸盖由高强度合金铸铁制成,除普通135气缸盖外,其余机型的喷油器水套与气缸盖铸成一体,使气缸盖刚度大大加强,进、排气道经奥地利AVL公司与燃油系统匹配后优化设计,采用螺旋型进气道,其进气阻力小,进气涡流比合适,排气通畅,在热负荷较严重的“鼻梁区”增设了喷水管以加强冷却。
3.1.2机体:由高强度合金铸铁制成,为隧道式结构,这种结构形式刚度好,结构紧凑。机体两侧设有检视窗口和盖板,通过下面窗口可以检查曲轴、主轴承和连杆轴承,也可以拆装连杆螺钉和连杆盖,还可以拆洗机油泵吸油粗滤网。其中有一个盖板上装有带滤芯的通气管,用于曲轴箱通风。对12V增压中冷发电型柴油机而言,随机带有加油管焊接部件,日常添加润滑油时可将此部件装于机体前端的左上方。机体上布满了油道、水道,在机身装有放水阀,当柴油机停机后,特别是气温低于5℃的寒冷环境中,一定要打开放水阀,放尽冷却水,以防止机体、气缸套冻裂。
3.1.3气缸套:为湿式气缸套,即表面与冷却水直接接触。靠橡胶封水圈与机体的水腔密封。安装时橡胶封水圈不得扭曲,且与缸套环形槽应均匀地沿周向贴紧。
3.1.4飞轮壳:像罩子,罩住了旋转的飞轮,起安全保护作用,同时作为配套联结用,如:与船用齿轮箱、发电机联结。为了方便用户配套,飞轮壳有两种供用户选用,一种是按工厂标准生产的135接口,另一种为SAE 0#接口。
3.2主要运动件
3.2.1曲轴结合组:曲轴是由球墨铸铁制成的组合式结构,主要由皮带盘、前轴、曲拐、法兰、飞轮和滚动轴承等组成。对老的12V135柴油机而言,曲轴是个较突出的薄弱环节,在用户使用过程中就曾发生过断裂。所以我公司对现有的大功率机,采取了果断措施,冲破连杆轴颈直径95mm这一多年保持不变的框框,而取100mm。这既提高了曲轴的强度,又有利于提高连杆轴瓦的承载能力。在保持连杆轴颈直径100 mm的同时,又应用本公司的专利,改进了各曲拐相互连接的方式,各曲拐用12个螺栓联接,并把材料提升,同时对轴颈表面作氮化处理,从多方面来提高可靠性。因此,可以说,目前的大功率机曲轴是一支很有特色的强度高、刚性好的组合式曲轴。
皮带盘:可以输出部分功率、一般小于35 kW,直接横向拖动的话,只能允许11 kW。部分机型皮带盘上装有橡胶或硅油减振器,以降低曲轴的扭转振动,使整个曲轴飞轮组运转更平稳。
飞轮:其作用是平衡轴系,避免转速急剧变动,保证柴油机运转均匀,同时供复校及调整喷油提前角和配气相位用。作为功率输出的联结装置,飞轮有两种供用户选用,一种按工厂标准制造,另一种按“SAE”标准制造,为14#飞轮。
3.2.2活塞连杆结合组:
活塞进行轻量化、高强度、低磨擦优化设计,燃烧室为ω形状,大功率机的活塞顶面进行阳极氧化处理,阻热效果好,之一道环槽镶耐磨圈以改善活塞的热流型线,同时对活塞进行喷油冷却以改善热负荷。
对活塞组而言,维修过程中大致须注意的有:同一台柴油机中尽量控制各活塞的重量,原则上各活塞的重量差应不大于10g;活塞环,因活塞环的功用是密封活塞与气缸之间的间隙,故其装法非常重要,对非增压机,第二、三道气环有倒角的一面应朝上,NT和138系列,环上有“TOP”标识的一面朝上,另外,各活塞环的开口切忌在一方向上,应按一定的角度120℃左右错开,构成所谓的“迷宫式”封气装置,否则会造成下窜气和上机油。
连杆:设计为锲形,在不影响使用可靠性的前提下,能尽可能减少连杆组的往复惯性运动的当量质量。为了保证柴油机的运行平稳,同一台柴油机连杆的质量误差不要超过30克。连杆组在维修过程中大致须注意的有:一是对用连杆小头喷油的柴油机,轴瓦表面开有油槽,上、下瓦有严格区分,切勿装错;二是更换连杆衬套时,衬套上的油孔与连杆小头上油孔应对齐,以保证活塞销和衬套的润滑;三是连杆体和连杆盖为成组配对,拆装时不许调错。
3.2.3传动机构
传动机构设在柴油机的前端即自由端,由齿轮传动和三角橡胶带传动两部分组成。柴油机的配气凸轮轴、喷油泵、机油泵、水泵和充电发电机均由曲轴主动齿轮通过齿轮来传动。齿轮系能为喷油泵、凸轮轴传递一定的扭矩,同时保证喷油、配气的正时。135、138系列柴油机的喷油泵传动轴与喷油泵驱动端之间采用柔性设计,有利于减少因喷油泵传动轴与喷油泵凸轮轴的同轴度误差给钢片联轴器使用寿命带来的不利影响,同时也提高了喷油泵的可靠性。为避免喷油泵传动联轴器钢片断裂,用户在装配时应特别注意,保证钢片与联轴节、钢片与喷油泵结合器联接可靠,必要时适当调整联轴节装配部件与喷油泵传动的轴向位置,保证钢片不得有挠曲。各齿轮间的啮合间隙正常情况下为0.08-0.25mm,过大,啮合噪声大并加快磨损,过小,则齿面易产生干摩擦烧损。
3.2.4配气系统:配气系统主要包括进气管、排气管、空气滤清器、消声器、进气门、排气门、挺杆、凸轮轴和传动齿轮等。配气系统的作用是定时打开和关闭各气缸的进、排气门,以使燃烧室内进气充足、排气干净,且达到密封良好的目的。气门开始开启和关闭终了时刻的曲轴转角称为配气相位。理论上气门的开启和关闭都应在活塞冲程的开始和终了时实现,为了尽可能地增大进气和排气时间,以使气缸中能充气较充足、排气较彻底,一般高速柴油机的进气门及排气门大都早开和迟关。以135柴油机为例,进、排气门的开启、关闭和延续角如下:
上止点
下止点
进气门:
上止点前20°CA开启
下止点后48°CA关闭
延续角248°CA
排气门:
下止点前48°CA开启
上止点后20°CA关闭
延续角248°CA
135、138系列柴油机采用的是顶置式二气门结构。通过优化设计气缸盖的进、排气道、气门座、气门头部结构,使整个气道过渡圆滑、平稳,获得较高的气门流通截面的流量系数,以更大程度地降低沿程阻力和局部阻力,进、排气阻力小,泵气损失少,从而提高柴油机机械效率。另外,凸轮轴型线的优化设计,使得进气丰满系数大、加速度适中,对配气机构的运动副产生最小的冲击,使柴油机工作更加柔和。
四、主要系统介绍
4.1燃油供给和调速系统
燃油供给系统主要由低压油路和高压油路两部分组成,其功用是保证在活塞向上运动到压缩上止点前一定度数时,定质、定量、定时地向燃烧室内喷入高压燃油。低压油路内的组成部件主要包括油箱、低压油管(即柴油软管)、低压输油泵和柴油滤清器等;高压油路内的组成部件主要包括高压喷油泵、调速器、高压油管和喷油器等。
柴油机工作时,输油泵从燃油箱吸取燃油,送至燃油滤清器,经滤清后进入喷油泵。燃油压力在喷油泵内被提高,按不同工况所需的供油量,经高压油管输送到喷油器,最后经喷油孔形成雾状喷入燃烧室内。输油泵供应的多余燃油、喷油器的回油及喷油泵的多余燃油都经燃油滤清器的回油管返回燃油箱中。12V柴油机配有两只输油泵和两只燃油滤清器并联使用。直列机喷油泵总成上装有手动泵,对12V机在柴油机前端上方左侧装有手压泵,以便在起动时泵油和排除燃油系统中的空气。
发电型柴油机的调速器,在其壳体的右上方装有一块扇形板的微调机构;当多台柴油发电机组并联工作时,可用此扇形板来调节柴油机的调速器。调节时,可旋松扇形板腰形孔上的螺帽,慢慢转动扇形板至所需调速率的位置并加以固定。另外,为满足用户高配置的需求,我公司还可配置电子调速器。
4、2润滑系统
润滑系统主要由油底壳、机油泵、机油管、机油冷却器、机油粗滤器、机油精滤器及内部各油路组成。润滑系统的功用是减轻零件表面摩擦,带走零件所吸收的部分热量,冲冼零件表面,提高密封效果,防止部件生锈。润滑系统中大致要注意:油底壳中的机油量要保证;要定期清冼或更换滤清忒子;保证润滑管路的通畅和密封等。
柴油机的润滑油路,因机型和用途的不同,在油路的设计和布置上稍有区别。以我公司目前更大功率的12V增压中冷机为例,其润滑油路走向大致为:
机油泵:为齿轮泵,双支撑、压配结构,其作用是产生压力油,压力足够将润滑油运送到各运动摩擦副。在机油泵泵体上设有安全阀,当机油泵出油压力过高时自动卸压,避免冷车时润滑油压力过高而损坏机油管、油压表等零件。安全阀开启压力出厂时已调好,用户请勿随意拆卸。
机油滤清器上装有调压阀和旁通阀。调压阀的作用是调整机油压力,防止柴油机工作时机油压力过高或过低。柴油机出厂时,机油压力已调整好,如果调压阀经过拆装,则柴油机开车后应立即进行调整。旁通阀的作用是当机油滤器一旦发生阻塞时,机油可不经滤清直接由旁通阀门流至主油道,以保证柴油机仍能工作,此阀不需作任何调整。
4、3冷却系统
冷却系统主要由水泵、风扇、热交、水温表、节温器、机体内部水道以及缸盖内部水道等组成。冷却系统的功用是冷却机体内部各运动部件及少部分固定部件,并对机油进行强制冷却。我公司根据柴油机的的使用条件有开式循环冷却和闭式循环冷却,相应水路走向不一样。陆用发电型柴油机除少数使用条件允许,并有充足的水源时,可采用开式循环冷却系统,但多数还是以闭式循环冷却系统为主,即从柴油机出来的高温冷却液,通过水散热器靠风扇强力鼓风来冷却,冷却后的水再去冷却柴油机。冷却系统中要注意的是柴油机工作时不允许出现气阻和断水,特别当柴油机长时间停放后,更容易产生水路气阻现象,应经常注意排除。注意放气时应小心,以防热气伤人。
12V大功率机的水路走向如下图所示。
另外冷却系统中还需强调的:
一是柴油机在工作时,水散热器即水箱上的压力盖应紧闭,以免妨碍冷却系统的正常工作。须经常检查水箱内的冷却液面并及时补充,但切勿在柴油机重载运行中打开水箱压力盖,更好在停车后直至水温低于70℃时,方可拧下压力盖,在柴油机启动前,向空的水箱加注冷却液时不应太快,加满后停两分钟,待系统中的空气逸出后再补加一次,这样可防止水面的假满现象和避免柴油机过热。
二是风扇,对陆用发电型柴油机而言,都是采用吸风式风扇,安装风扇时切勿装反,风扇与水箱间的距离也要适宜,一般风扇露出水箱导风罩厚度的三分之一,否则将影响风扇风量,使水箱的散热效果下降。
4.4起动系统和仪表系统
起动系统主要由蓄电池、起电机、磁力开关以及控制按钮等组成。充电系统主要由调节器、发电机、充电线路、用电负载和控制开关等组成。起动系统和充电系统的功用是准时起动和按时给蓄电池充电。要改善柴油机的起动性能一般通过进气预热、提高压缩比、减小喷油提前角、加大起动电机等措施。
为满足用户需要,190kW以上机型一般配有柴油机监控仪。柴油机监控仪使用24V电源,用户只要将监控仪的电源接在24V的电瓶输出端上。机器在运转时如机油压力过低(≤0.18MPa),水温偏高(>95℃),机油温度过高(>105℃),报警装置会发出声光报警,请用户立即排除故障。如用户不能及时排除故障,该机会自动停机,监控仪的机油温度传感器接头插在油底壳下部的专用接头处。水温传感器接头装于调温器体的壳体或出水总管上。机油压力报警装置接头和机油压力表接头并联装在飞轮壳上部。燃油切除装置接在燃油泵燃油输入口处。
最后简单讲一下柴油机的几大使用注意事项:
① 柴油机低温起动后,转速的增加应尽可能缓慢。柴油机低温起动后,机油压力的升高都要有一个过程,而在这个过程中柴油机的各运动部件得不到足够的润滑,如果快速地提高转速,易造成轴承、汽缸套内部及其他需要润滑的部件的磨损加剧,而且直接加负荷还会造成燃烧室及其他部件损坏。
② 不同牌号的机油不允许混合使用。不同牌号的机油的粘度指数是不一样的,其运动粘度、水分含量和使用环境都有区别,所以不允许CA级机油和CC级机油混合使用和非增压的机油混合使用。
③ 不允许在柴油机重负荷运转中打开水箱压力盖。因为柴油机在重负荷运转时,水温往往过高,易造成蒸汽伤人。
④ 柴油机使用的柴油必须进行净化。如果柴油内混入过多的机械杂质,会加剧喷油泵和喷油器内部精密偶件的磨损,严重时还会使各运动部件发生卡滞现象,易造成高压油泵的各缸供油不均、功率下降和柴油消耗增加等。
⑤ 柴油机起动后不允许长时间怠速运转。柴油机起动后,如果长时间怠速运转,会导致柴油喷入燃烧室后燃烧不充分,形成过多的积碳而发生喷油器内部偶件堵塞现象,还会引起气门座和活塞环内部结胶等。柴油机的怠速运转时间一般不要超过8min.
⑥ 新购买或经过大修的柴油机要有一定的磨合期。车用柴油机的磨合期一般为2500km左右,柴油发电机组配置的柴油机的磨合期一般为70h左右。
⑦ 柴油机在起动前一定要对机油的质量和数量进行检查。机油的添加一定要符合技术要求,一般情况下柴油机运转前,机油的液面应在机油标尺的静满刻度处,运转中应在动满刻度处,若不符合要求,应及时添加。
版权声明
本文仅代表作者观点,不代表本站立场。
本文系作者授权发表,未经许可,不得转载。